NiFe₂O₄ nanoparticles decorated on 3D graphene capsule as an electrode for advanced energy storage applications

Shaymaa AL- Rubaye a,b‡, Ranjusha Rajagopalan a*‡, Chandrasekhar Subramaniyam a, Zhixin Tai a, Xian Jian c, Xiaolin Wang a, Shi Xue Dou a*, Zhenxiang Cheng a*

Fig.SI-I . Powder XRD patterns of (a) graphene capsules (GCs), and (b) FTIR spectra of GCs, NFO, and NFO-8GCs

nanocomposite.

Fig.SI-II. (a) Fe 2p, (b) Ni 2p, (c) O 1s XPS spectra of NFO–8GCs nanocomposite and (d&e) XPS survey and O 1s spectra of GCs.

Fig. SI-III. (a-c) TEM images of NFO-GCs, (d&e) high magnification TEM images showing the presence of internal and external NFO in the GCs system.

Fig. SI-IV. (a, b) TEM images of NFO-8GCs showing the presence of internal and external NFO.

Fig.SI-V. (a, b) TEM images of GCs, c) HRTEM image of GCs, (d) corresponding SAED pattern.

Fig. SI-VI (a) TEM image of the NFO-GCs and (b-e) corresponding elemental mapping and (f) the combined elemental mapping.

Fig. SI-VII. TGA analysis of the NFO- GCs nanocomposites with different ratios of GCs.

Fig.SI-VIII. (a, c, e) Nitrogen adsorption and desorption isotherms of the GCs, NFO, and NFO-8GCs composite,

while (b, d, e) show the corresponding Barrett-Joyner-Halenda (BJH) pore size distributions.

Fig. SI-IX cycling performance of NFO–GCs nanocomposites at 2 Ag⁻¹ for 12000 cycles.

Fig. SI-X. a) CV curves, b) charge /discharge curves, c) Nyquist plot recorded between 1 Hz and 100 kHz, and d) cycling performance of the NFO–8GCs solid state device.

Table SI-1 BET surface area and pore size of GCs, NFO and NFO-GCs:

Samples	BET specific surface area (m ² g ⁻¹)	BJH pore volume (cc g ⁻¹)	Average pore size (nm)	
GCs	509.99	3.68E-01	7.5	
NFO	15.642	1.57E-02	10.7	
NFO-8GCs	43.643	3.47E-02	7.6	

Table SI -2 Solution Resistance (R_s), charge transfer resistance (R_{ct}), initial capacitance and capacitance

retention of NFO and NFO-GCs:

Samples	R _s	R _{ct}	Canacitance F. g ⁻¹	Capacitance
	(Ω)	(Ω)	capacitation 11g	Retention %
NFO	4.7	4.18	720	88
NFO-2GCs	3.10	3.23	860	90
NFO-8GCs	0.92	1.42	1028	94
NFO-18GCs	0.54	1.39	945	92

 Table SI-3 Electrochemical performance comparison of present system with different reported NFO system:

Electrode Material	Processing Technique	Specific capacitan ce (F g ⁻¹)	No. of Cycles	Capacitance Retention (%)	Reference No.
NFO- carbon textile	Hydrothermal	584	10000	93.5	20
NFO-carbon cloth	Hydrothermal	1135.5	3000	80	21
NFO	Chemical bath deposition	541	1050	_	23
NFO	Hydrothermal	1040	500	70	38
NFO- PANI	Polymerization	448	1000	80	39
NFO-DOT:PSS- rGO	One- step	1090	750	94	40
NFO- GCs	Hydrothermal	1028	10000	94	Present study