Supporting Information

A multifunctional and recyclable terbium (III) coordination polymer: displaying highly selective and sensitive detection of Fe³⁺, Cr^{VI} anions, and picric acid in aqueous media

Yang Yang, Xuerui Song, Cong Xu, Yingzhe Wang, Guolin Zhang and Weisheng Liu*

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

> *Corresponding author. Tel: +86/931/8915151 Fax number: +86/931/8912582 E/mail: liuws@lzu.edu.cn

Figure S1. IR spectra of 1 and L.

Figure S2. The solid-state excitation spectrum of L at room temperature (em = 415 nm).

Figure S3. The solid-state emission spectrum of L at room temperature (ex =283 nm).

nm)

Figure S5. The solid-state emission spectrum of 1 at room temperature (ex = 353 nm).

Figure S6. The excitation spectrum of 1 in deionized water (em = 547 nm).

Figure S7. The emission spectrum of 1 in deionized water (em = 353 nm).

Figure S8. The TGA curves of 1.

Figure S9. The absorbance spectra of 1 and other analytes in deionized water.

Figure S10. Color changes of 1 in the presence of various analytes in deionized water.

Figure S11. Luminescence intensity at 547 nm of **1** with CrO_4^{2-} (1×10⁻³ M) in the presence of other anions (1×10⁻³ M) in deionized water.

Figure S12. Luminescence quenching efficiencies of various cations towards **1** at 5 mM concentration.

Figure S13. Luminescence quenching efficiencies of various anions towards **1** at 1 mM concentration.

Figure S14. (a) Luminescence responses of **1** toward different concentrations of CrO_4^{2-} (0–1 mM) in deionized water (λ_{ex} = 353 nm). (b) Stern–Volmer plot of I_0/I versus increasing concentrations of CrO_4^{2-} .

Figure S15. Repeatability of the quenching ability of **1** in deionized water and in the presence of CrO_4^{2-} (1 mM).

Figure S16. The PXRD patterns of **1** after five cycles experiment for the detection of various analytes.

Figure S18. The absorbance spectra of various NAEs in deionized water.

Figure S19. The ¹H NMR spectra of ligand L in DMSO-d₆.

Figure S20. The Mass spectra of ligand L.

Compound	1	
Empirical formula	$C_{34}H_{22}N_5O_{11}Tb$	
Formula weight	835.50	
Crystal system	triclinic	
Space group	P-1	
a/Å	10.5191(14)	
b/Å	11.2198(14)	
c/Å	13.7378(16)	
α/°	92.717(10)	
β/°	102.283(11)	
γ/°	92.021(10)	
Volume/ų	1580.8(3)	
Z	2	
D _{calc} g/cm ³	1.755	
µ/mm ⁻¹	2.286	
F(000)	828.0	
Crystal size/mm ³	0.34×0.24×0.23	
Reflections collected	11784	
Independent reflections	5105	
Data/restraints/parameters	6183/12/460	
Goodness-of-fit on F ²	1.068	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0541, wR ₂ = 0.1262	
Final R indexes [all data]	R ₁ = 0.0698, wR ₂ = 0.1391	

Table S1. Crystal data and structure refinement for 1.

Probes	Detection limit/M	Testing platform	References
	$(Fe^{3+}/Cr^{VI}/PA)$		
	1×10 ⁻⁵		Chem. Eur. J.,
11	1×10 ⁻⁵	DMF solution	2016, 22 , 18769
	1×10 ⁻⁵		
	4.3×10 ⁻⁵		Dalton Trans.,
$2-Eu^2$	1.7×10^{-5}	Aqueous solution	2017, 46 ,13878
	2.2×10 ⁻⁵		
2-Tb ²	1.6×10 ⁻⁵	Aqueous solution	Dalton Trans.,
	2.5×10 ⁻⁵		2017, 46 ,13878
	1.8×10 ⁻⁵		
33	1.0×10 ⁻⁵	DMF solution	Dalton Trans.,
	5.0×10 ⁻⁵		2018, 47 , 3272
	5×10 ⁻⁷		Dalton Trans.,
44	1×10 ⁻⁶	CH ₃ CN solution	2018, 47 , 7480
	5×10 ⁻⁷		
55	1.0×10 ⁻⁵	DMF solution	J. Solid. State.
	1.0×10 ⁻⁵		<i>Chem.</i> , 2018, 262 ,
			282
	1.8×10 ⁻⁵		ChemPlusChem.,
66	1.8×10 ⁻⁵	DMF solution	2016, 81 , 1299
	1×10 ⁻⁸		
This work	1×10 ⁻⁷	Aqueous solution	
	1×10 ⁻⁸		

Table S2. Crystal data and structure refinement for 1.

References

1. L. Wei, H. Xin, X. Cong, C. Chunyang, Y. Lizi, D. Wei, C. Wanmin, Y. Huan and L. Weisheng, *Chem–Eur. J.*, 2016, **22**, 18769.

2. W. Gao, F. Liu, B.-Y. Zhang, X.-M. Zhang, J.-P. Liu, E.-Q. Gao and Q.-Y. Gao, *Dalton. T.*, 2017, **46**, 13878.

3. X. Zhang, Z. Zhan, X. Liang, C. Chen, X. Liu, Y. Jia and M. Hu, *Dalton. T.*, 2018, **47**, 3272.

4. Y. Yang, F. Qiu, C. Xu, Y. Feng, G. Zhang and W. Liu, Dalton. T., 2018, 47, 7480.

5. L. Yu, C. Wang, C.-J. Hu, W.-W. Dong, Y.-P. Wu, D.-S. Li and J. Zhao, *J. Solid. State. Chem.*, 2018, **262**, 282.

6. L. Jian-Qiang, L. Gao-Peng, L. Wei-Cong, L. Qing-Lin, L. Bao-Hong, G. R. W., H. Lei and B. S. R., *ChemPlusChem.*, 2016, **81**, 1299.