Supporting Information

2-Aminophenolate Ligands for Phosphorus(V): A Lithium Salt Featuring the Chiral $[\text{P(OC}_6\text{H}_4\text{NR)}_3]^{-}$ Anion

Chuantian Zhan, Zeyu Han, Brian O. Patrick and Derek P. Gates*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1. E-mail: dgates@chem.ubc.ca

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Fig. S1 The minor component (7%) in the molecular structure for intermediate 3a (thermal ellipsoids are displayed at 50% probability level). Hydrogen atoms are omitted for clarity. Bond lengths and angles are similar to those found in the major structure.
Fig. S2 31P$[^1]H$ NMR spectra (121 MHz, CDCl$_3$, 298 K) of phosphoranes 2a-c and intermediate 3a.
Fig. S3 1H NMR spectra (300 MHz, CDCl$_3$, 298 K) of phosphoranes: (a) 2a; (b) 2b; (c) 2c; (d) 3a recrystallized from CH$_2$Cl$_2$ (* indicates the residual CHCl$_3$ and † indicates the residual CH$_2$Cl$_2$ solvent).

Fig. S4 13C(1H) NMR spectrum (100.5 MHz, CD$_2$Cl$_2$, 298 K) of phosphorane 2a (* indicates the solvent).
Fig. S5 19F(1H) NMR spectrum (282 MHz, CDCl$_3$, 298 K) of phosphorane 2c.

Fig. S6 1H NMR spectra (400 MHz, DMSO-d_6, 298 K) of Li(THF)$_3$-[4a] (* indicates the solvent).
Fig. S7 1H(31P) NMR spectra (400 MHz, DMSO-d_6, 298 K) of Li(THF)$_3$ fac-[4a].
Fig. S8 13C[1H] NMR spectra (100.5 MHz, DMSO-d$_6$, 298 K) of Li(THF)$_3$ [4a] (* indicates the solvent).
Fig. S9 1H-13C HSQC NMR spectrum (400 MHz for 1H, DMSO-d_6, 298 K) of Li(THF)$_3$fac-[4a] (The ordinate axis shows the 13C[1H] NMR spectrum and the abscissa axis shows the 1H NMR spectrum; * indicates the solvent).
Fig. S10 1H–13C HMBC NMR spectrum (400 MHz for 1H, DMSO–d_6, 298 K) of Li(THF)$_3$–fac–[4a] (The ordinate axis shows the 13C–1H NMR spectrum and the abscissa axis shows the 1H NMR spectrum; * indicates the solvent).
Fig. S11 31P NMR spectrum (121 MHz, 298 K) of Li(THF)$_3$ fac-[4a] in DMSO-d_6 over 6 months.

Fig. S12 1H-31P HMBC NMR spectrum (400 MHz for 1H, DMSO-d_6, 298 K) of Li(THF)$_3$ fac-[4a] (The ordinate axis shows the 31P-1H NMR spectrum and the abscissa axis shows the 1H NMR spectrum).
Fig. S13 Partial 1H-31P HMBC NMR spectrum (400 MHz for 1H, DMSO-d_6, 298 K) of Li(THF)$_3$fac–[4a] (The ordinate axis shows the 31P[1H] NMR spectrum and the abscissa axis shows the 1H NMR spectrum).
Fig. S14 Partial 1H-31P HMBC NMR spectrum (400 MHz for 1H, DMSO-d_6, 298 K) of Li(THF)$_3$fac-[4a] (The ordinate axis shows the 31P(1H) NMR spectrum and the abscissa axis shows the 1H NMR spectrum).