Supporting Information

A New Method to Discover Reaction Mechanism of Perovskite Nanocrystals

Chun Sun,1 Zhiyuan Gao,1 Hanxin Liu,1 Chong Geng,1 Hua Wu,2 Xiaoyu Zhang,2 Chao Fan1 and Wengang Bi1,*

1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China
Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China
2State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
E-mail: wbi@hebut.edu.cn

Experimental Section

Chemicals: Cs₂CO₃ (99.9%), iodotrimethylsilane (95%), bromotrimethylsilane (97%), chlorotrimethylsilane (99%) and CH₃COOCs (99.9%) were attained from J&K. Oleic acid (90%, OA), octadecene (90%, ODE), PbO (99.0%) and Lead stearate (99.9%, PbSt₂) were purchased from Alfa Aesar. Oleylamine (80-90%, OLA), (CH₃COO)₂Pb (99.99%) and Pb(NO₃)₂ (99.99%) were purchased from Aladdin. Hexane (99.5%) was obtained from Beijing Chemical Factory. PbO (99.0%) was attained from Sigma-Aldrich. All the chemicals were used without further purification.

Synthesis CsPbBr₃ NCs: 10 mL ODE, 1mL OA, 1 mL OLA, 0.1mmol Cs₂CO₃ and 0.2 mmol PbSt₂ were loaded into a 50 mL three-neck round-bottom flask, degassed under vacuum for 10 min and dried under vacuum for 1 h at 120°C. Then, the temperature was elevated to 180°C under N₂ protection and 0.08 mL TMSBr was quickly injected.
5 seconds later, an ice-water bath was applied to cool down the solution to room temperature. Next, the as-prepared solution was centrifuged at 7000 rpm for 10 min. Hexane was added to the precipitate, and then centrifuged at 7000 rpm for 2 min. Finally, the NCs were acquired in the supernatant. The amount of Cs$_2$CO$_3$, PbSt$_2$ and TMSBr can be adjusted at will, for example, Cs$_4$PbBr$_6$ NCs were synthesized under 0.05 mmol PbSt$_2$. Besides, other Cs and Pb monomers can also be used to synthesis perovskite NCs, such as PbO, (CH$_3$COO)$_2$Pb, CH$_3$COOCs et al. For the mixed halide perovskite NCs, certain feed ratio of halosilanes (TMSBr, TMSI or TMSCl) were mixed previously with 0.5 ml ODE, then the mixture was vibrated 3 minutes and injected into the Cs and Pb solution.

Characterizations: Fluorescence emission spectra were measured using an Ocean Optics spectrometer. Absorbance spectra of samples were carried out by using a Shimadzu UV-2550 spectrophotometer. The morphology of the NCs was observed by a FEI Tecnai G2 Spirit TWIN transmission electron microscope (TEM) operating at 100 kV. X-ray diffraction (XRD) patterns of NCs were acquired using a Bruker D8 Advance X-ray diffractometer (Cu Kα: λ = 1.5406 Å). Fourier transform infrared spectroscopy (FTIR) was performed on a Thermo-Nicole iS50 FTIR-spectrometer. The absolute PL QYs of the samples were obtained by a fluorescence spectrometer (FLS920P, Edinburgh Instruments) equipped with an integrating sphere with its inner face coated with BENFLEC. Time-resolved PL lifetime measurements were carried out using a time-correlated single-photon counting (TCSPC) lifetime spectroscopy system with a picosecond pulsed diode laser (EPL-380 nm) as the single wavelength excitation light source. The absolute PL quantum yields of samples were determined by standard procedures using a fluorescence spectrometer (FLS920P, Edinburgh Instruments) equipped with an integrating sphere. Atomic force microscopic (AFM) experiments were performed with an Agilent series 5100 AFM/STM. Nuclear Magnetic Resonance (NMR) measurements were recorded on a Bruker Avance 400 Spectrometer operating at a 1H frequency of 400 MHz.
Figure S1. TEM image of Cs$_4$PbBr$_6$ perovskite QDs; (b) size distributions of histogram of these QDs in (a); (c) HRTEM image of Cs$_4$PbBr$_6$ QDs; (d) SAED pattern Cs$_4$PbBr$_6$ QDs (e) Schematic of the cubic Cs$_4$PbBr$_6$ perovskite lattice.

Figure S2. TEM image of the mixture CsPbBr$_3$ and Cs$_4$PbBr$_6$ QDs with a Cs:Pb:Br ratio of 1:0.7:3.
Figure S3. AFM image (a) of the mixture CsPbBr$_3$ and Cs$_4$PbBr$_6$ QDs with a Cs:Pb:Br ratio of 1:0.7:3 and (b) the height distribution.

Figure S4. EDX spectrum of CsPbBr$_3$ QDs.

<table>
<thead>
<tr>
<th>Reaction ratio of Cs:Pb:Br</th>
<th>1:0.25:3</th>
<th>1:0.7:3</th>
<th>1:1:3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final ratio of Cs:Pb:Br</td>
<td>3.8:1:5.7</td>
<td>1.2:1:3.7</td>
<td>0.85:1:3.1</td>
</tr>
</tbody>
</table>

Table S1. Element ratio acquired from EDX.
Figure S5. Mapping images of CsPbBr$_3$ QDs. (a) High-angle annular dark-field scanning TEM (HAADF-STEM) image of CsPbBr$_3$ QDs, cesium (b), lead (c), bromine (d) elemental maps.
Figure S6. Time-resolved PL decay of CsPbBr$_3$ QDs.

Figure S7. Time-resolved PL decay for the mixture of CsPbBr$_3$ and Cs$_4$PbBr$_6$ QDs.
Figure S8. Schematic for centrifugation procedure with increased Pb content (the Cs:Pb:Br ratio is shown in the left).

Figure S9. 1H NMR spectrum of CsPbBr$_3$ NCs.
Figure S10. XRD patterns with increased Cs content (the black rhombus represents the peak of Cs$_4$PbBr$_6$).

Figure S11. Schematic for centrifugation procedure with increased Cs content (the Cs:Pb:Br ratios are shown in the left).
Figure S12. XRD patterns with increased Br content (the black rhombus represents the peak of Cs$_4$PbBr$_6$).

Figure S13. Schematic for centrifugation procedure with increased Br content (the Cs:Pb:Br ratio is shown in the left).
Figure S14. TEM image of CsPbBr$_3$ QDs with a Cs:Pb:Br ratio of 1:1:5.

Figure S15. Schematic of the CsPbBr$_3$ (a) and Cs$_4$PbBr$_6$ (b) perovskite lattices.