Three Isoreticular MOFs Derived from Bent Diisophthalate Ligands: Exploring the Substituent Effect on the Structural Stabilities and Gas Adsorption Properties

Yao Wang, Minghui He, Xiaoxia Gao, Piao Long, Yingying Zhang, Haoyan Zhong, Xia Wang and Yabing He*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn

Fig. S1 The electronic photographs of the as-synthesized (a) ZJNU-87, (b) ZJNU-88, and (c) ZJNU-89.

Fig. S2 The as-synthesized (red), activated (blue), and simulated (black) PXRD patterns for (a) **ZJNU-87**, (b) **ZJNU-88**, and (c) **ZJNU-89**. For recording PXRD patterns of the activated MOFs, the three MOFs were activated using dichloromethane as activation solvent.

Fig. S3 TGA curves of the as-synthesized (a) ZJNU-87, (b) ZJNU-88, and (c) ZJNU-89 under nitrogen atmosphere.

Fig. S4 Comparison of the FTIR spectra of the organic ligands and their corresponding Cu-based MOFs.

 $S_{\text{BET}} = \frac{1}{(7.3129 \times 10^{-7} + 0.00257)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1693 \text{ m}^2 \text{ g}^{-1}}{S_{\text{Langmuir}}} = \frac{(1/0.00223)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 1952 \text{ m}^2 \text{ g}^{-1}}$ BET constant $C = 1 + 0.00257/7.3129 \times 10^{-7} = 3515$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.01659$$

Fig. S5 The consistency (a), BET (b), and Langmuir (c) plots for ZJNU-88.

 $S_{\text{BET}} = 1/(1.25186 \times 10^{-7} + 0.00269)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1618 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00246)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1770 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00269/1.25186 \times 10^{-7} = 21489$

$$(p/p_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.0067755$$

Fig. S6 The consistency (a), BET (b), and Langmuir (c) plots for ZJNU-89.

Fig. S7 The isosteric heat of C_2H_2 , CO_2 , and CH_4 adsorption in (a) ZJNU-88 and (b) ZJNU-89 as a function of gas loadings.

Fig. S8 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-88** with the fitted isotherms at 278 K, 288 K and 298 K.

Fig. S9 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-89** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S10 IAST selectivities for the equimolar (a) C_2H_2 -CH₄, (b) CO₂-CH₄ and (c) C_2H_2 -CO₂ gas mixtures in **ZJNU-88** at three different temperatures of 278 K, 288 K, and 298 K.

Fig. S11 IAST selectivities for the equimolar (a) C_2H_2 -CH₄, (b) CO₂-CH₄ and (c) C_2H_2 -CO₂ gas mixtures in **ZJNU-89** at three different temperatures of 278 K, 288 K, and 298 K.

ppm

чŢТ - - - -90 80 ----П ТТ T T П ppm

Fig. S12 ¹H and ¹³C NMR spectra

MOFs	ZJNU-87	ZJNU-88	ZJNU-89		
Empirical formula	$C_{21}H_{15}N_3O_{10}Cu_2$	$C_{23}H_{17}NO_{10}Cu_2$	$C_{23}H_{17}NO_{12}Cu_2$		
Formula weight	596.46	594.48	626.46		
λ (Å)	0.71073	0.71073	0.71073		
Crystal system	Hexagonal	Hexagonal	Hexagonal		
Space group	P6 ₃ /mmc	P6 ₃ /mmc	P6 ₃ /mmc		
	<i>a</i> = 18.4908(5) Å	<i>a</i> = 18.5415(2) Å	<i>a</i> = 18.6741(2) Å		
	b = 18.4908(5) Å	<i>b</i> = 18.5415(2) Å	b = 18.6741(2) Å		
Unit call dimensions	c = 23.7857(13) Å	c = 23.4290(5) Å	c = 23.6008(3) Å		
Unit cen dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$		
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$		
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$		
$V(\text{\AA}^3)$	7043.0(5)	6975.48(18)	7127.49(14)		
Ζ	6	6	6		
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	0.844	0.849	0.876		
μ (mm ⁻¹)	0.937	0.944	0.930		
F(000)	1800	1800	1896		
Crystal size (mm)	0.22 ×0.20 ×0.16	$0.25 \times 0.21 \times 0.11$	0.24 ×0.15 ×0.11		
θ range for data collection (°)	3.37 to 28.50	1.74 to 26.21	1.73 to 26.35		
	$-24 \le h \le 15$	$-22 \le h \le 22$	$-22 \le h \le 23$		
Limiting indices	$-14 \le k \le 24$	$-23 \le k \le 16$	$-22 \le k \le 19$		
	$-31 \le l \le 16$	$-16 \le l \le 28$	$-28 \le l \le 13$		
Reflections collected / unique	25730 / 3277	22344 / 2620	23392 / 2720		
R _{int}	0.0539	0.0258	0.0285		
Max. and min. transmission	0.8646 and 0.8204	0.9032 and 0.7981	0.9046 and 0.8077		
	Full-matrix least-squares on	Full-matrix least-squares on	Full-matrix least-squares on		
Refinement method	F^2	F^2	F^2		
Data/restraints/parameters	3277 / 1 / 96	2620 / 0 / 108	2720 / 0 / 113		
Goodness-of-fit on F^2	1.096	1.042	1.689		
	$R_1 = 0.0802$	$R_1 = 0.0544$	$R_1 = 0.0574$		
Final R indices $[I > 2\sigma(I)]$	$wR_2 = 0.2936$	$wR_2 = 0.2173$	$wR_2 = 0.1999$		
	$R_1 = 0.1233$	$R_1 = 0.0573$	$R_1 = 0.0610$		
R indices (all data)	$wR_2 = 0.3170$	$wR_2 = 0.2257$	$wR_2 = 0.2026$		
Largest diff. peak and hole (e'Å ⁻³)	0.576 and -0.376	1.641 and -0.415	0.499 and -0.491		
CCDC	1851966	1851967	1851968		

Table S1 Crystal data and structure refinement for ZJNU-87, ZJNU-88, andZJNU-89.

Table S2 Langmuir-Freundlich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-88**

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v	R^2	
C_2H_2	10.43552	5.49969×10 ⁻⁷	27.69	0.89668	0.99968	
CO ₂	17.90333	2.72016×10 ⁻⁷	23.11	1	0.99973	
CH ₄	11.10538	5.35974×10 ⁻⁷	18.56	1	0.99996	

Table S3 Langmuir-Freundlich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-89**

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	$\frac{E}{(\text{kJ mol}^{-1})}$	v	R^2
C_2H_2	11.1738	7.44501×10 ⁻⁷	26.86	0.9133	0.9997
CO ₂	17.34973	2.06841×10 ⁻⁷	24.02	1	0.99943
CH ₄	12.95296	1.14×10 ⁻⁶	16.24	1	0.99991

MOFs	$S_{ m BET}$ ($S_{ m Langmuir}$)	$V_{\rm p}$	$D_{\rm c}$ (g cm ⁻³)	$\begin{array}{ c c c }\hline C_2H_2 \text{ uptake at 1 atm} \\ \hline [cm^3 (STP) g^{-1}] \end{array}$		CO_2 uptake at 1 atm [cm ³ (STP) g ⁻¹]		$S_{\mathrm{C_2H_2/CH_4}}$		S _{CO2} /CH4					
	$(m^2 g^{-1})$	(cm ² g ²)		278 K	288 K	298 K	278 K	288 K	298 K	278 K	288 K	298 K	278 K	288 K	298 K
ZJNU-87	NA	NA	0.7927	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZJNU-88	1693	0.6995	0.7975	201.2	185.2	166.0	153.6	125.1	99.2	38.4	33.1	28.9	6.5	5.9	5.4
	(1952)														
ZJNU-89	1618	0.6303 0.	0.8252 217.2	217.2	100.9	101 2	81.3 159.2	130.3	103.0	41.2	35.3	30.7	7.5	6.5	5.8
	(1770)			217.2 1	199.8	101.5									

Table S4 The pore textural properties and gas adsorption properties of ZJNU-87, ZJNU-88 and ZJNU-89.

 $S_{\text{BET}}/S_{\text{Langgmuir}}$: BET/Langmuir specific surface area; V_p : experimental pore volume determined by 77 K N₂ adsorption; D_c : framework density without guest molecules and terminal water molecules; NA: not available