Supporting Information

"On the influence of the titanium source on the composition and

structure of novel titanoniobates "

Joanna Dopta, Sven Grzanna, Christian Näther, Wolfgang Bensch*

Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany

* Corresponding Author: Wolfgang Bensch, E-mail: wbensch@ac.uni-kiel.de, Fax: +49 431 880 1520,

Tel: +49 880 2091

Content

Figures		
Figure S1	Optical micrographs of the crystals.	3
Figure S2	Experimental and simulated X-ray powder patterns.	5
Figure S3	View on the anionic cluster in I.	9
Figure S4	View on the layered structure of $[Ni(cyclam)_4][Ti_2Nb_8O_{28}] \cdot 22H_2O(I)$.	11
Figure S5	Representation on the H-bonding interactions (dashed lines) in compound I.	12
Figure S6	View on the arrangement of water O atoms in the water cluster in I.	14
Figure S7	Arrangement of the differently coordinated [Ni(cyclam)] ²⁺ molecules in I.	15
Figure S8	Coordination environment of the [Ni(cyclam)] ²⁺ cations in the structure of II .	17
Figure S9	The [TiNb ₉ O ₂₈] ⁷⁻ anion in the structure of II surrounded by six [Ni(cyclam)] ²⁺ cations.	18
Figure S10	Coordination environment of K ⁺ cations in the structure of II (a) and III (b-c) .	19
Figure S11	Arrangement of the KO ₇ polyhedra and $[TiNb_9O_{28}]^{7-}$ anions in the structure of II.	20
Figure S12	H bonding interactions in the structure of compound II.	22
Figure S13	View on the arrangement of water O atoms in II.	23
Figure S14	The L5(4)L30(18) water cluster in the structure of II.	24
Figure S15	The extended water motif in the structure of compound III.	25
Figure S16	Infrared spectrum of compound I.	26
Figure S17	Infrared spectrum of compound II.	27
Figure S18	Infrared spectrum of compound III.	28
Figure S19	Infrared spectrum of compound IV.	29
Figure S20	UV/Vis diffuse reflectance spectrum of compound I.	31
Figure S21	UV/Vis diffuse reflectance spectrum of compound II.	31
Figure S22	UV/Vis diffuse reflectance spectrum of compound III.	32
Figure S23	UV/Vis diffuse reflectance spectrum of compound IV.	32
Figure S24	DTA-TG curves of compound I.	33
Figure S25	DTA-TG curves of compound II.	34
Figure S26	DTA-TG curves of compound III.	34
Figure S27	DTA-TG curves of compound IV.	35
Figure S28	XRDP of compound I after heating and rehydration.	35
Figure S29	XRDP of compound II after heating and rehydration.	36
Figure S30	XRDP of compound III after heating and rehydration.	37
Figure S31	XRDP of compound IV after heating and rehydration.	38
Figure S32	XRDP of compound I after pH stability tests	39
Figure S33	XRDP of compound II after pH stability tests	40
Tables		
Table S1	Selected crystal data for all compounds.	4
Table S2	Results of bond valence sum analysis.	7
Table S3	Nb-O bond lengths in the titanoniobate unit in I.	7
Table S4	Bond angles in the titanoniobate unit in I.	8
Table S5	M-O bond lengths (M=Ti/Nb) / Å in I compared to literature.	9
Table S6	Bond lengths and angles for the coordination environment around Ni ²⁺ in I.	10
Table S7	Geometrical parameters of hydrogen bonds in I.	11
Table S8	O – O distances in water clusters for compounds I-III.	13
Table S9	Nb-O bond lengths / A in the titanoniobate unit in II.	16
Table S10	Comparison of the bond lengths / A in the anionic units of compounds II and III.	16
Table S11	Bond lengths and angles for the [Ni(cyclam)] ²⁺ cations in compound II .	17
Table S12	K-O bond lengths / A in the structure of compounds II and III.	19
Table S13	Geometrical parameters of hydrogen bonds in II.	21
Table S14	Comparison of selected bond lengths and angles in compound II and III.	25
Table S15	Assignment of the IR absorptions compared to literature-known compounds.	30

Figure S1a-d: Optical micrographs of the crystals of $\{[Ni(cyclam)]_4[Ti_2Nb_8O_{28}]\}_n \cdot 22nH_2O$ (a), $K[Ni(cyclam)]_3[TiNb_9O_{28}] \cdot 18H_2O$ (b), $K[Ni(cyclam)]_3[TiNb_9O_{28}] \cdot 14H_2O$ (c) and $K[Ni(cyclam)]_3[TiNb_9O_{28}] \cdot ~10H_2O$ (d)

	Compound I	Compound II	Compound III
Sum formula	$C_{40}H_{140}N_{16}Ni_4Nb_8Ti_2O_{50}$	C ₃₀ H ₁₀₈ KN ₁₂ Nb ₉ Ni ₃ O ₄₆ Ti	$C_{30}H_{100}KN_{12}Nb_9Ni_3O_{42}Ti$
Crystal system	monoclinic	monoclinic	triclinic
Space group	<i>C</i> 2/m	<i>C</i> 2/c	<i>P</i> -1
a / Å	18.8775(6)	25.3130(6)	11.6781(5)
b/Å	21.9384(5)	19.1246(5)	13.7488(8)
c / Å	14.6624(4)	15.9741(4)	22.6762(13)
α/°	90	90	103.762(4)
6/°	128.456(2)	100.847(2)	90.404(4)
γ/°	90	90	98.135(4)
V / Å ³	4755.1(2)	7594.9(3)	3497.6(3)
Z	2	4	2
Formula weight / g · mol ⁻¹	2719.59	2472.44	2400.53
$ ho_{calc.}$ / g · cm ⁻³	1.899	2.197	2.279
λ/Å	0.71073	0.71073	0.71073
Scan mode	Omega scan	Omega scan	Omega scan
2θ range / °	$1.661 \le \theta \le 27.005$	$1.343 \le \theta \le 27.005$	$1.542 \le \theta \le 27.005$
Crystal dimensions / mm	0.06 x 0.11 x 0.16	0.07 x 0.09 x 0.12	0.06 x 0.09 x 0.12
Crystal colour	pale purple	yellow	yellow
Temperature / K	170(2)	170(2)	170(2)
Index range	-24 ≤ h ≤ 24	-29 ≤ h ≤ 32	-14 ≤ h ≤ 14
	-28 ≤ k ≤ 28	-24 ≤ k ≤ 24	-17 ≤ k ≤ 17
	-17 ≤ ≤ 18	-20 ≤ l ≤ 20	-28 ≤ l ≤ 28
Reflections collected	34711	30337	40100
Independent reflections	5340	8279	15247
R _{int}	4859	0.0449	0.0684
Reflections with $F_0 > 4\sigma(F_0)$)	0.0433	7724	10775
μ / mm ⁻¹	1.948	2.337	2.470
Number of parameters	349	475	932
Transm min/max	0.5950/0.8078	0.6517/0.7340	0.6356/0.7561
$R1 (F_0 > 4\sigma(F_0))$	0.0299	0.0522	0.0573
R1 (all data)	0.0348	0.0604	0.0864
wR2 (all data)	0.863	0.1415	0.1548
ΔF /e ·Å-³	0.611/-0.813	0.834/-1.119	0.920/-1.266
GOF	1.057	1.184	1.021

Table S1: Selected crystal data for all compounds and details of the structure refinement.

Figures S2a-d. Experimental (black) and simulated X-ray powder patterns (red) of compounds I-III (ac) and experimental XRDP of IV (d).

Table S2. Results of bond valence sum analysis. In the sites of mixed occupancy (Ti(9)/Nb(9) and

BVS fo	rl				
Nb(1)	5.09	Ti(1)	4.04	Ni(1)	2.25
Nb(2)	5.12			Ni(2)	2.21
BVS fo	r II				
Nb(1)	5.15	Ti(1)/Nb(5)	4.52	Ni(1)	2.41
Nb(2)	5.13			Ni(2)	2.41
Nb(3)	5.12				
Nb(4)	5.07				
BVS fo	r III				
Nb(1)	5.09	Ti(9)/ Nb(9)	4.79	Ni(1)	2.42
Nb(2)	5.11	Ti(10) /Nb(10)	4.27	Ni(2)	2.38
Nb(3)	5.12			Ni(3)	2.37
Nb(4)	5.11			Ni(4)	2.36
Nb(5)	5.12				
Nb(6)	5.13				
Nb(7)	5.07				
Nb(8)	5.07				

Ti(10)/Nb(10)), the atom with a site occupancy of 75% is highlighted in bold.

Table S3. Nb-O bond lengths in the titanoniobate unit in I sorted by type of bridging mode.

Bond type	Atoms	Bond length /Å	Bond type	Atoms	Bond length /Å
Nb=O _t	Nb(1)-O(1)	1.752(2)		Nb(2)-O(8)#2	2.0852(17)
	Nb(2)-O(9)	1.768(2)	Nb-μ ₆ -Ο	Nb(1)-O(7)#2	2.4305(19)
Nb-µ ₂ -O	Nb(1)-O(4)	1.9888(14)		Nb(2)-O(7)#2	2.3829(3)
	Nb(1)-O(2)	1.995(2)		O(7)-Nb(2)#2	2.3829(3)
	Nb(1)-O(3)#1	2.005(2)		O(7)-Nb(2)#3	2.3829(3)
	Nb(1)-O(6)	2.0213(19)		O(7)-Nb(1)#2	2.4305(18)
	Nb(2)-O(3)	1.924(2)		O(7)-Nb(1)#3	2.4305(18)
	Nb(2)-O(2)	1.927(2)	Ti-μ₂-Ο	Ti(1)-O(6)#3	1.8124(19)
	O(3)-Nb(1)#1	2.005(2)		Ti(1)-O(6)	1.812(2)
	O(4)-Nb(1)#1	1.9888(14)	Ti-μ₃-Ο	Ti(1)-O(8)	1.962(3)
Nb-μ ₃ -Ο	O(8)-Nb(2)#2	2.0850(17)		Ti(1)-O(5)	1.983(3)
	O(8)-Nb(2)#1	2.0850(17)	Τi-μ ₆ -Ο	Ti(1)-O(7)	2.1889(17)
	O(5)-Nb(2)#3	2.0787(17)		Ti(1)-O(7)#2	2.1889(17)
	Nb(2)-O(5)	2.0787(17)		O(7)-Ti(1)#2	2.1889(17)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+2 #2 -x+1,-y+1,-z+2 #3 x,-y+1,z.

Table S4. Bond angles / $^\circ$ in the titanoniobate unit in I.

O(1)-Nb(1)-O(4)	104.52(10)	O(2)-Nb(2)-O(8)#2	153.39(10)
O(1)-Nb(1)-O(2)	103.59(9)	O(5)-Nb(2)-O(8)#2	74.86(9)
O(4)-Nb(1)-O(2)	87.26(6)	O(9)-Nb(2)-O(7)#2	171.10(9)
O(1)-Nb(1)-O(3)#1	101.91(9)	O(3)-Nb(2)-O(7)#2	79.71(7)
O(4)-Nb(1)-O(3)#1	88.51(6)	O(2)-Nb(2)-O(7)#2	79.84(7)
O(2)-Nb(1)-O(3)#1	154.40(8)	O(5)-Nb(2)-O(7)#2	74.53(9)
O(1)-Nb(1)-O(6)	102.69(9)	O(8)#2-Nb(2)-O(7)#2	74.74(9)
O(4)-Nb(1)-O(6)	152.78(9)	O(6)#3-Ti(1)-O(6)	105.62(13)
O(2)-Nb(1)-O(6)	86.35(8)	O(6)#3-Ti(1)-O(8)	97.99(8)
O(3)#1-Nb(1)-O(6)	85.95(8)	O(6)-Ti(1)-O(8)	97.99(8)
O(1)-Nb(1)-O(7)#2	178.15(8)	O(6)#3-Ti(1)-O(5)	95.80(8)
O(4)-Nb(1)-O(7)#2	77.03(8)	O(6)-Ti(1)-O(5)	95.80(8)
O(2)-Nb(1)-O(7)#2	77.41(6)	O(8)-Ti(1)-O(5)	157.08(12)
O(3)#1-Nb(1)-O(7)#2	77.04(6)	O(6)#3-Ti(1)-O(7)	86.38(8)
O(6)-Nb(1)-O(7)#2	75.76(7)	O(6)-Ti(1)-O(7)	167.87(8)
O(9)-Nb(2)-O(3)	107.30(10)	O(8)-Ti(1)-O(7)	81.76(6)
O(9)-Nb(2)-O(2)	104.69(9)	O(5)-Ti(1)-O(7)	80.93(6)
O(3)-Nb(2)-O(2)	94.01(9)	O(6)#3-Ti(1)-O(7)#2	167.86(9)
O(9)-Nb(2)-O(5)	97.54(10)	O(6)-Ti(1)-O(7)#2	86.39(8)
O(3)-Nb(2)-O(5)	152.43(10)	O(8)-Ti(1)-O(7)#2	81.76(6)
O(2)-Nb(2)-O(5)	90.99(8)	O(5)-Ti(1)-O(7)#2	80.93(6)
O(9)-Nb(2)-O(8)#2	99.51(10)	O(7)-Ti(1)-O(7)# 2	81.56(10)
O(3)-Nb(2)-O(8)#2	89.15(8)	O(6)#3-Ti(1)-O(6)	105.62(13)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+2; #2 -x+1,-y+1,-z+2; #3 x,-y+1,z

Figure S3. View on the anionic cluster in compound I. The bond lengths were compared to known $[Ti_2Nb_8O_{28}]^{8-}$ containing compounds^{[1][2]} and colored as follows: green: good agreement; red: longer bonds; light orange: shorter bonds than reported in literature.

Table. S5. M-O bond lengths (M=Ti/Nb) / Å in title compound sorted by number of bridging atoms and comparison to the bond lengths in the two known dititanioniobates^{[1][2]}. Color code: green: good agreement; red: longer bonds; light orange: shorter bonds than literature-known compounds.

	[Ni(cyclam)]₄ [Ti₂Nb ₈ O ₂₈]· 22H₂O	[Cu(en) ₂ (H ₂ O) ₂] ₃ [Cu(en) ₂][[Ti ₂ Nb ₈ O ₂₈]· 8H ₂ O	Na ₈ [Ti ₂ Nb ₈ O ₂₈]· 34H ₂ O
Nb=O _t	1.752(2)-1.768(2)	1.750(4)-1.764(4)	1.759(2)-1.765(2)
Nb-µ ₂ -O	1.924(2)-2.0213(19)	1.919(4)-2.026(4)	1.921(2)-2.032(2)
Nb-µ₃-O	<mark>2.0787(17)-2.0850(17</mark>	2.091(4)-2.098(4)	2.099(2)-2.104(2)
Nb-µ ₆ -O	<mark>2.3829(3)-2.4305(18)</mark>	2.415(4)-2.501(4)	2.409(2)-2.481(2)
Ti-μ₂-Ο	<mark>1.812(2)</mark>	1.811(4)-1.833(4)	1.817(2)-1.824(2)
Ti-µ₃-O	1.963(3)-1.983(3)	1.990(4)-2.011(4)	1.999(2)-2.001(2)
Ti-μ₀-Ο	<mark>2.1889(17)</mark>	2.134(4)-2.153(4)	2.150(2)-2.167(2)

Ni(1)-N(1)	2.062(3)	Ni(2)-N(12)	2.058(7)
Ni(1)-N(1)#4	2.062(3)	Ni(2)-N(13)	2.080(5)
Ni(1)-N(2)	2.073(3)	Ni(2)-N(11)	2.105(5)
Ni(1)-N(2)#4	2.073(3)	Ni(2)-O(9)#3	2.111(2)
Ni(1)-O(1)#4	2.087(2)	Ni(2)-N(14)	2.138(6)
N(1)-Ni(1)-N(1)#4	180.0	N(12)-Ni(2)-N(13)	93.9(4)
N(1)-Ni(1)-N(2)	85.81(12)	N(12)-Ni(2)-N(11)	83.7(3)
N(1)#4-Ni(1)-N(2)	94.19(12)	N(13)-Ni(2)-N(11)	174.8(2)
N(1)-Ni(1)-N(2)#4	94.19(12)	N(12)-Ni(2)-O(9)	87.2(2)
N(1)#4-Ni(1)-N(2)#4	85.81(12)	N(13)-Ni(2)-O(9)	88.0(3)
N(2)-Ni(1)-N(2)#4	180.00(11)	N(11)-Ni(2)-O(9)	96.4(2)
N(1)-Ni(1)-O(1)	89.82(10)	N(12)-Ni(2)-O(9)#3	168.8(2)
N(1)#4-Ni(1)-O(1)	90.18(10)	N(13)-Ni(2)-O(9)#3	95.0(3)
N(2)-Ni(1)-O(1)	91.27(9)	N(11)-Ni(2)-O(9)#3	87.9(2)
N(2)#4-Ni(1)-O(1)	88.73(9)	O(9)-Ni(2)-O(9)#3	86.37(12)
N(1)-Ni(1)-O(1)#4	90.18(10)	N(12)-Ni(2)-N(14)	99.3(2)
N(1)#4-Ni(1)-O(1)#4	89.83(10)	N(13)-Ni(2)-N(14)	83.9(4)
N(2)-Ni(1)-O(1)#4	88.73(9)	N(11)-Ni(2)-N(14)	92.0(3)
N(2)#4-Ni(1)-O(1)#4	91.27(9)	O(9)-Ni(2)-N(14)	169.9(2)
O(1)-Ni(1)-O(1)#4	180.0	O(9)#3-Ni(2)-N(14)	88.32(19)

Table S6. Bond lengths / Å and angles / ° for the coordination environment around $\rm Ni^{2+}$ in I.

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y, -z + 2; #2 - x + 1, -y + 1, -z + 2; #3 x, -y + 1, z; #4 - x + 1/2, -y + 1/2, -z + 2.

Figure S4. View on the layered structure of $[Ni(cyclam)_4][Ti_2Nb_8O_{28}] \cdot 22H_2O$ (I) along [001]; green polyhedra: NbO₆; violet polyhedra: TiO₆; blue polyhedra: NiN₄O₂.

D-H…A	d(D-H)	d(H…A)	d(D…A)	>(DHA)		
N-HO bonding interactions between cyclam molecules						
and water or cluster O	atoms					
N(2)-H(2)O(13)#5	1.00	2.21	3.147(4)	155.6		
N(11)-H(11)O(5)	1.00	2.07	2.953(5)	146.3		
N(12)-H(12)O(16)	1.00	2.16	3.114(7)	167.3		
N(14)-H(14)O(16)	1.00	2.16	3.122(7)	161.3		
C-HO bonding interac	ctions bet	tween cyc	lam molec	ules		
and cluster O atoms						
C(2)-H(2B)O(6)	0.99	2.58	3.553(4)	169.0		
C(5)-H(5B)O(1)	0.99	2.65	3.160(4)	112.5		
C(13)-H13(B)O(9)	0.99	2.58	3.093(7)	112.3		
C(20)-H(20A)O(2)#3	0.96	2.43	3.391(7)	163.8		

Table S7. Geometrical parameters of hydrogen bonds in I.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+2 #2 -x+1,-y+1,-z+2 #3 x,-y+1,z #4 -x+1/2,-y+1/2,-z+2 #5 x-1/2,-y+1/2,z

Figure S5a-c. Representation on the H-bonding interactions (dashed lines) in compound I involving the *cis*- and the *trans*-[Ni(cyclam)]²⁺ (bottom) molecules in I. Only one orientation of the disordered ligand is shown. Green polyhedra: NbO₆, violet polyhedra: TiO₆.

Table S8. O – O distances in water clusters for compounds I-III.

atom 1	atom 2	distance / Å	atom 1	atom 2	distance / Å
	compound I			O(27)	2.873
O(15)	O(16)	2.778	O(22)	O(23)	2.891
O(12)	O(13)	2.802	O(23)	O(23)	2.910
O(14)	O(18)	2.828		Average:	2.812
O(17)	O(14)	2.840		compou	nd II
O(11)	O(12)	2.856	O(36)	O(42)	2.698
O(12)	O(17)	2.875	O(42)	O(35)	2.725
O(11)	O(12)	2.894	O(7)	O(41)	2.725
O(14)	O(16)	2.904	O(38)	O(6)	2.732
Average: 2.847			O(43)	O(44)	2.751
	compou	nd II	O(35)	O(3)	2.765
O(24)	O(29)	2.730	O(36)	O(40)	2.769
O(24)	O(30)	2.736	O(37)	O(4)	2.769
O(23)	O(26)	2.738	O(40)	O(43)	2.790
O(25)	O(26)	2.753	O(41)	O(39)	2.802
O(22)	O(25)	2.770	O(8)	O(43)	2.806
O(21)	O(24)	2.778	O(39)	O(3)	2.811
O(28)	O(28)	2.787	O(8)	O(40)	2.840
O(21)	O(25)	2.822	O(41)	O(38)	2.847
O(22)	O(24)	2.824	O(42)	O(41)	2.871
O(22)	O(28)	2.837	O(37)	O(32)	2.948
O(27)	O(27)	2.859		Average:	2.791
O(24)	O(30)	2.873			

Figure S6. View on the arrangement of water O atoms in the water cluster in I along b axis. O – O distances up to 3.04 Å shown in dashed lines.

Figure S7a-b. Arrangement of the differently coordinated $[Ni(cyclam)]^{2+}$ molecules in I with respect to the water cluster. O – O distances up to 3.04 Å shown in dashed lines. Green polyhedra: NbO₆, violet polyhedra: TiO₆. H atoms omitted for clarity.

Bond type	Atoms	Bond length /Å	Bond type	Atoms	Bond length /Å
Nb=O _t	Nb(1)-O(1)	1.741(6)		Nb(4)-O(10) #1	2.106(4)
	Nb(2)-O(11)	1.756(4)		O(9)-Nb(2)#1	2.102(4)
	Nb(3)-O(12)	1.743(5)		O(10)-Nb(4)#1	2.106(4)
	Nb(4)-O(13)	1.763(4)	Nb-μ ₆ -Ο	Nb(1)-O(6) #1	2.486(4)
Nb-µ ₂ -O	Nb(1)-O(2)	1.995(4)		Nb(2)-O(6)#1	2.390(4)
	Nb(1)-O(3)	1.953(4)		Nb(3)-O(6)#1	2.496(4)
	Nb(1)-O(5)	2.065(4)		O(6)-Nb(4)#1	2.399(4)
	Nb(1)-O(4)	1.982(4)		O(6)-Nb(2)#1	2.390(4)
	Nb(2)-O(2)	1.923(4)		O(6)-Nb(1)#1	2.486(4)
	Nb(2)-O(7)	1.905(4)		O(6)-Nb(3)#1	2.493(4)
	Nb(3)-O(3)	1.944(4)		Nb(3)-O(6)#1	2.493(4)
	Nb(3)-O(7)	1.985(4)		Nb(4)-O(6)#1	2.399(4)
	Nb(3)-O(8)	2.012(4)	Ti/Nb-μ ₂ -Ο	Ti(1)/Nb(5)-(O14)	1.815(4)
	Nb(3)-O(14)#1	2.068(4)		Ti(1)/Nb(5)-(O5)	1.827(4)
	Nb(4)-O(4)	1.913(4)	Ti/Nb -µ₃-O	Ti(1)/Nb(5)-(O9)	1.999(4)
	Nb(4)-O(8)	1.933(4)		Ti(1)/Nb(5)-(O10)	1.992(4)
	O(14)-Nb(3)#1	2.068(4)	Nb/Ti-µ ₆ -O	Ti(1)/Nb(5)-(O6)	2.191(4)
Nb-µ₃-O	Nb(2)-O(9)#1	2.102(4)	1	O(6)- Ti(1)/Nb(5)#1	2.208(4)
	Nb(2)-O(10)	2.116(4)		Ti(1)/Nb(5)-O(6)#1	2.208(4)
	Nb(4)-O(9)	2.098(4)			

Table S9. Nb-O bond lengths / Å in the titanoniobate unit in **II** sorted by type of bridging mode.

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,-y+3/2,-z+1; #2 -x+2,y,-z+3/2.

Table S10. Comparison of the bond lengths / Å in the anionic units of compounds II and III with those reported for $(TMA)_7[TiNb_9O_{28}]\cdot 22H_2O^{[3]}$.

Bond type	Compound II	Compound III	TiNb ₉ ^[3]
Nb=O _t	1.741(6)- 1.763(4)	1.737(5)- 1.768(5)	1.746(4)-1.770(4)
Nb-µ₂-O	1.905(4)- 2.068(4)	1.907(5)- 2.098(5)	1.900(4)-2.078(4)
Nb-μ ₃ -Ο	2.098(4)- 2.116(4)	2.074(5)- 2.119(4)	2.086(4)-2.127(4)
Nb-µ ₆ -O	2.390(4)- 2.496(4)	2.394(4)- 2.520(4)	2.398(4)-2.512(4)
Ti/Nb-μ ₂ -Ο	1.815(4)- 1.827(4)	1.808(5)- 1.826(5)	1.809(4)-1.815(4)
Ti/Nb-μ₃-O	1.992(4)- 1.999(4)	1.994(4)- 2.023(4)	2.001(4)-2.028(4)
Ti/Nb-μ ₆ -Ο	2.191(4)- 2.208(4)	2.182(5)- 2.228(5)	2.183(4)-2.222(4)

Figure S8. Coordination environment of the [Ni(cyclam)]²⁺ cations in the structure of II.

 Table S11. Ni-N bond lengths / Å and N-Ni-N bond angles / ° for the [Ni(cyclam)]²⁺ cations in compound II.

Ni(1)-N(1)	1.923(6)	Ni(2)-N(11)	1.923(6)
Ni(1)-N(2)	1.941(6)	Ni(2)-N(11)#2	1.923(6)
Ni(1)-N(3)	1.933(6)	Ni(2)-N(12)#2	1.938(5)
Ni(1)-N(4)	1.926(6)	Ni(2)-N(12)	1.938(5)
N(1)-Ni(1)-N(4)	94.1(3)	N(11)#2-Ni(2)-N(11)	86.2(3)
N(1)-Ni(1)-N(3)	178.4(2)	N(11)#2-Ni(2)-N(12)#2	93.5(2)
N(1)-Ni(1)-N(2)	86.0(3)	N(11)-Ni(2)-N(12)#2	176.1(2)
N(4)-Ni(1)-N(2)	179.7(2)	N(11)#2-Ni(2)-N(12)	176.1(2)
N(4)-Ni(1)-N(3)	86.8(3)	N(11)-Ni(2)-N(12)	93.5(2)
N(3)-Ni(1)-N(2)	93.2(3)	N(12)#2-Ni(2)-N(12)	87.1(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,-y+3/2,-z+1 #2 -x+2,y,-z+3/2.

Figure S9. The $[TiNb_9O_{28}]^{7-}$ anion in the structure of **II** surrounded by six $[Ni(cyclam)]^{2+}$ cations. H and K atoms are not displayed. Green polyhedra: NbO₆, violet polyhedra: TiO₆.

Figure S10a-c. Coordination environment of K⁺ cations in the structure of II (a) and III (b-c)

surrounded by water molecules and cluster O atoms.

Compound II		Compound III			
atoms	distance	atoms	distance	atoms	distance
	/ Å		/ Å		/ Å
K(1)-O(11)	2.841(6)	K(1)-O(13)	3.035(6)	K´(1)- O(33)	2.952(16)
K(1)#1-O(13)	2.874(6)	K(1)-O(15)	3.079(6)	K´(1)- O(33)	2.691(16)
K(1)-O(13)#1	2.874(6	K(1)-O(31)	2.697(12)	K´(1)- O(34)	2.831(13)
K(1)-O(24)	2.806(7)	K(1)-O(31)	3.133(13)	K´(1)- O(37)	2.601(7)
K(1)-O(25)	2.796(7)	K(1)-O(32)	3.060(14)	K´(1)- O(39)	3.057(8)
K(1)-O(26)	3.016(9)	K(1)-O(32)	3.104(15)	K´(1)- O(46)	2.815(13)
K(1)-O(29)	3.054(8)	K(1)-O(39)	2.774(8)		
K(1)-O(30)	2.734(12)	K(1)-O(46)	3.052(12)		
Average: 2.874		Average: 2.920			

Table S12. K-O bond lengths / Å in the	structure of compounds II and III.
--	------------------------------------

Figure S11. Arrangement of the KO₇ polyhedra and $[TiNb_9O_{28}]^{7-}$ anions in the structure of **II** along [010]. The $[Ni(cyclam)]^{2+}$ cations and water O atoms which are not involved in K-O interactions are omitted. Green: NbO₆, violet: Ti/NbO₆, blue: KO₇ polyhedra.

	Table S13.	Geometrical	parameters	of hydrogen	bonds in II.
--	------------	-------------	------------	-------------	--------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N-HO bonding interactions between cyclam molecules and cluster O atoms					
N(1)-H(1)O(14)	1.00	2.01	2.937(7)	152.9	
N(2)-H(2)O(1)#3	1.00	2.37	3.238(8)	145.1	
N(2)-H(2)O(2)#3	1.00	2.47	3.302(7)	139.9	
N(3)-H(3)O(2)#3	1.00	2.61	3.395(7)	135.9	
N(3)-H(3)O(11)#3	1.00	2.17	3.031(7)	143.1	
N(4)-H(4)O(5)	1.00	1.85	2.837(7)	169.4	
N(11)-H(11)O(13)	1.00	1.84	2.828(7)	170.4	
N(12)-H(12)O(8)	1.00	2.03	2.996(7)	160.6	
C-HO bonding interactions betwee	en cyclam	molecules ar	nd cluster O at	oms	
C(1)-H(1B)O(3)#3	0.99	2.53	3.446(9)	153.5	
C(2)-H(2A)O(12)#1	0.99	2.63	3.454(9)	140.5	
C(3)-H(3A)O(7)#1	0.99	2.65	3.574(9)	156.3	
C(6)-H(6A)O(4)	0.99	2.41	3.373(9)	165.0	
C(7)-H(7A)O(11)#3	0.99	2.45	3.194(9)	131.2	
C(8)-H(8B)O(7)#3	0.99	2.58	3.493(9)	152.9	
C(10)-H(10A)O(12)#3	0.99	2.59	3.507(9)	153.5	
C(12)-H(12B)O(4)#2	0.99	2.62	3.514(8)	150.1	
C(14)-H(14A)O(1)#2	0.99	2.64	3.540(9)	150.5	
C(15)-H(15A)O(3)#2	0.99	2.47	3.421(8)	161.2	
C-HO bonding interactions between cyclam molecules and water O atoms					
C(4)-H(4A)O(25)#3	0.99	2.59	3.517(11)	155.3	
C(5)-H(5B)O(30)#3	0.99	2.48	3.434(15)	163.1	
C(9)-H(9B)O(23)	0.99	2.64	3.558(10)	153.7	
C(11)-H(11A)O(30)#4	0.99	2.58	3.229(14)	122.7	
C(13)-H(13B)O(22)#5	0.99	2.64	3.595(9)	162.3	

Symmetry transformations used to generate equivalent atoms:#1 -x+3/2,-y+3/2,-z+1; #2 -x+2,y,-z+3/2; #3 - x+3/2,y-1/2,-z+3/2; #4 x+1/2,y-1/2,z; #5 x+1/2,-y+3/2,z-1/2.

Figure S12. H bonding interactions in the structure of compound **II** shown in dashed lines. Color code: N-H…O(cluster): blue, C-H…O(cluster): black, C-H…O(water): red. Grey polyhedra: Ti/NbO₆ units.

Figure S13a-b. View on the arrangement of water O atoms in **II**. O-O distances below the sum of the van der Waals radii in dashed lines. a) View on the L5(4)30(18) building unit. The isolated fragments consisting of two water molecules (O24,O29) attached to the water cluster are displayed in black and omitted in b) View on the L5(4)30(18) type water cluster along [010].

Figure S14. The L5(4)L30(18) water cluster in the structure of **II** (grey polyhedra: Ti/NbO₆), which are connected via two water O atoms along b axis. The water O atoms that do not expand the network (O24+O29), K and H atoms omitted.

	Nb=O _t bond	Nb-µ ₂ -O bond	Nb-μ ₃ -O bond
	lengths / Å	lengths / Å	lengths / Å
П	1.741(6) - 1.763(4)	1.905(4) - 2.068(4)	2.098(4) - 2.116(4)
	1.737(5) – 1.768(5)	1.907(5) – 2.098(5)	2.074(5) – 2.119(4)
	Nb-μ ₆ -O bond	Ti/Nb- μ_2 -O bond	Ti/Nb-μ ₃ -O bond
	lengths / Å	lengths / Å	lengths / Å
II	2.390(4) -2.496(4)	1.815(4) – 1.827(4)	1.992(4) - 1.999(4)
Ш	2.394(4) - 2.520(4)	1.808(5) – 1.826(5)	1.994(4) – 2.023(4)
	Ti/Nb-μ ₆ -O bond	Nb-O-Nb angles / °	Ni-N bond lengths /Å
	lengths / Å		
П	2.191(4) - 2.208(4)	73.6(1) – 178.2(2)	1.923(6) - 1.941(6)
III	2.182(5) – 2.228(5)	73.45(17) – 177.9(2)	1.919(6) - 1.941(6)
	Ti/Nb-O-Ti/Nb	Ni-N	Ni-N
	angles / °	<i>cis</i> -angles / °	<i>trans</i> -angles / °
П	79.37(15) - 166.30(16)	86.0(3) - 93.5(2)	176.1(2) – 179.7(2)
Ш	80.03(17) – 166.5(2)	86.5(3) – 93.4(3)	177.2(2) – 180.0
	N-H…O _{cluster} / Å	C-H…O _{cluster} / Å	C-H…O _{water} / Å
Ш	2.828(7) – 3.238(8)	3.194(9) – 3.574(9)	3.23(1) – 3.595(9)
111	2.830(8) – 3.465(7)	3.130(10) -	3.191(14) -
		3.523(11)	3.522(10)
	< (NHO) / °	< (CHO _{cluster}) / °	< (CHO _{water}) / °
П	143.1 - 170.4	131.2 – 165.0	122.7 – 163.1
	138.6 – 171.6	137.0 – 178.3	137.0 – 178.3

 Table S14. Comparison of selected bond lengths and angles in compound II and III.

Figure S15. The extended water motif involving water (red) and cluster (black) O atoms in the structure of compound **III.**

Infrared spectroscopy

Figure S16. Infrared spectrum of compound I.

Figure S17. Infrared spectrum of compound II.

Figure S18. Infrared spectrum of compound III.

Figure S19. Infrared spectrum of compound IV.

I	П	111	IV	assignment	[Nb ₁₀ O ₂₈] ^{6- [5]}	[Ti ₂ Nb ₈ O ₂₈] ^{8- [2]}
3238	3162	3147	3170	v (N-H)		
	3034	3027	3034	v (N-H)		
2935	2941	2942	2946	v (C-H)		
2872	2858	2847	2865	v (C-H)		
1648	1647	1647	1640	δ (Ο-Η)		
1451	1458	1472	1464	v (C-C) + v (C-N)		
1423	1433	1432	1436	v (C-C) + v (C-N)		
1385				v (C-C) + v (C-N)		
1340	1337		1343	v (C-C) + v (C-N)		
1295	1309	1312	1303	v (C-C) + v (C-N)		
1240	1233	1241	1236	ν (C-N) + δ (C-H)		
1185	1154	1152	1171	ν (C-N) + δ (C-H)		
1105	1098	1102	1112	ν (C-C) + δ (C-N)		
1064	1071	1082	1060	ν (C-C) + δ (C-N)		
	1047	1047		ν (C-C) + δ (C-N)		
1006				ν (C-C) + δ (C-N)		
965				δ (N-H)/Nb-O _t		975
885	880	876	875	δ (N-H)/ Nb-O _t	886	
857	864	857		Nb-O _t	859	800
716	723		723	Ti/Nb-O-Ti/Nb	746,765	752
650	671	677	675	Ti/Nb-O-Ti/Nb	649	
	616	607	599	Ti/Nb-O-Ti/Nb		
526	519	522	527	macrocycl. def./	507, 534	524
				Nb-O-Nb		
488				Ti/Nb-O-Ti/Nb		
	436	437	439	Ti/Nb-O-Ti/Nb	434	

Table S15. Assignment of the IR absorptions compared to literature-known compounds^[4].

Figure S20. UV/Vis diffuse reflectance spectrum of compound I.

Figure S21. UV/Vis diffuse reflectance spectrum of compoundII.

Figure S22. UV/Vis diffuse reflectance spectrum of compound III.

Figure S23. UV/Vis diffuse reflectance spectrum of compound IV.

Figure S24a-b. DTA-TG curves of compound I without (a) and with (b) evacuating the sample chamber.

Figure S25. DTA-TG curves of compound II.

Figure S26. DTA-TG curves of compound III.

Figure S27. DTA-TG curves of compound IV.

Figure S28. Comparison of XRDP of compound I as–synthesized (red), after heating to 160 °C (grey) and after rehydration experiment (blue).

Figure S29. Comparison of XRDP of compound II as—synthesized (red), after heating to 250 °C (grey) and after rehydration experiment (blue).

Figure S30. Comparison of XRDP of compound **III** as–synthesized (red), after heating to 250 °C (grey) and after rehydration experiment (blue).

Figure S31. Comparison of XRDP of compound **II** (black) and **IV** (red) as–synthesized with the XRPD of **IV** after heating to 250 °C (grey) and after rehydration experiment (blue).

Figure S32. XRDP of compound I after immersing the samples in aqueous solutions of different pH values.

Figure S33. XRDP of compound **II** after immersing the samples in aqueous solutions of different pH values.

References

- M. Nyman, L. J. Criscenti, F. Bonhomme, M. A. Rodriguez, R. T. Cygan, J. Solid State Chem. 2003, 176, 111.
- [2] Y.-T. Zhang, P. Huang, C. Qin, L.-K. Yan, B.-Q. Song, Z.-X. Yang, K.-Z. Shao, Z.-M. Su, *Dalton Trans.* **2014**, *43*, 9847.
- [3] C. A. Ohlin, E. M. Villa, J. C. Fettinger, W. H. Casey, Dalton Trans. 2009, 2677.
- [4] G. Diaz F., R. Clavijo C., M. M. Campos-Vallette, M. Saavedra S, S. Diez, R. Muñoz, *Vib. Spectrosc.* **1997**, *15*, 201.
- [5] L. Shen, C.-H. Li, Y.-N. Chi, C.-W. Hu, Inorg. Chem. Commun. 2008, 11, 992.