Supporting Information

Designed Single-Source Precursors for Iron Germanide Nanoparticles: Colloidal Synthesis and Magnetic Properties

Alexandre Sodreau,^{a,b} Sonia Mallet-Ladeira,^c Sebastien Lachaize,^a Karinne Miqueu,^d Jean-Marc Sotiropoulos,^d David Madec,^b Céline Nayral^{*a} and Fabien Delpech^{*a}

^a LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France. E-mail: fdelpech@insa-toulouse.fr

^b Université de Toulouse, UPS, LHFA (Laboratoire Hétérochimie Fondamentale et Appliquée), UMR/CNRS 5069, 118, Route de Narbonne, 31062 Toulouse Cedex 09, France.

^c Institut de Chimie de Toulouse, Université Paul Sabatier (FR2599), 118, Route de Narbonne, 31062 Toulouse Cedex 09, France.

^d CNRS/UNIV PAU & PAYS ADOUR, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR CNRS 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France.

Scheme S1. Syntheses of [{iPrNC(tBu)NiPr}ClGe]Fe(CO)₄ (2a).

Figure S1. Thermal gravimetric analyses of complex 2a.

Figure S2. TEM pictures of the NPs prepared from **2a** in the presence of 0.5 equiv. HDA at 200°C.

Figure S3. EDX analysis of the NPs prepared from 2a in the presence of 0.5 equiv. HDA at 200°C.

Figure S4. Thermal gravimetric analyses of the NPs prepared from **2a** in the presence of 0.5 equiv. HDA at 200°C.

Figure S5. IR spectrum of the NPs prepared from **2a** in the presence of 0.5 equiv. HDA at 200°C.

Figure S6. XRD diffractogram of the NPs prepared from **2a** in the presence of 0.5 equiv. HDA at 200°C.

Figure S7. VSM of the NPs prepared from **2a** in the presence of 0.5 equiv. HDA at 200°C.

Figure S8. TEM, HRTEM pictures and SAED pattern for NPs of the NPs prepared from **2a** in the presence of 1 equiv. HDA and 1 equiv. PA at 200°C.

Figure S9. VSM of iron germanide NPs prepared from **2a** in the presence of 1 equiv. HDA and 1 equiv. of PA at 200°C.

Figure S10. ¹H NMR spectrum of **1b** (THF-D₈).

Figure S11. ¹³C NMR spectrum of **1b** (THF-D₈).

Figure S12. ¹H NMR spectrum of **2b** (THF-D₈).

Figure S13. ¹³C NMR spectrum of **2b** (THF-D₈).

Figure S15. Thermal gravimetric analyses of complex **2b**.

Figure S16. HRTEM pictures for NPs prepared from **2b** in the presence of 0.5 equiv. HDA at 200°C.

Figure S17. IR spectrum of the NPs prepared from **2b** in the presence of 0.5 equiv. HDA at 200°C.

Figure S18. XRD diffractogram of the NPs prepared from **2b** in the presence of 0.5 equiv. HDA at 200°C.

Figure S19. TEM pictures of the NPs prepared from **2b** in the presence of 1 equiv. PA at 200°C.

Figure S20. HRTEM and SAED pictures of the NPs prepared from **2b** in the presence of 1 equiv. PA at 200°C.

Figure S21. IR spectrum of the NPs prepared from **2b** in the presence of 1 equiv. HDA and 1 equiv. PA at 200°C.

Figure S22. Powder XRD of iron germanide NPs prepared from **2b** in the presence of 1 equiv. HDA and 1 equiv. of PA at 200°C.

Figure S23 HRTEM and SAED of iron germanide NPs prepared from **2b** in the presence of 1 equiv. HDA and 1 equiv. of PA at 200°C.

Crystallographic data

Figure S24 : Sample 1b

Figure S25 : Asymmetric Unit

Table S1. Crystal data and structure refinement for AS17040.

	Identification code				AS17040					
	Empirical formula					C17 H41 Ge N3 Si2				
	Formula weight					416.32				
	Temperature				253(2) K					
	Wavelength				0.71073 A					
	Crystal system, space group				Triclinic, P -1					
dog	Unit cell dimensions	a =	= 8	8.88	800(1	L9) A	a	lpha =	= 90.8	373(4)
deg.		b =	= 1	1.2	262(3	3) A	be	eta =	104.8	388(4)
deg.		C =	= 1	3.2	201(3	3) A	gar	nma =	105.	925(5)
uey.										
	Volume				1221	L.7(5)	A^3	3		
	Z, Calculated density				2,	1.132	Mg,	/m^3		
	Absorption coefficient				1.35	56 mm^	-1			

	F(000)	448
	Crystal size	0.260 x 0.220 x 0.200 mm
	Theta range for data collection	5.126 to 30.507 deg.
	Limiting indices	-12<=h<=12, -15<=k<=16, -18<=1<=18
	Reflections collected / unique	25261 / 7415 [R(int) = 0.0281]
	Completeness to theta = 25.242	99.1 %
F^2	Refinement method	Full-matrix least-squares on
	Data / restraints / parameters	7415 / 0 / 221
	Goodness-of-fit on F^2	1.038
	Final R indices [I>2sigma(I)]	R1 = 0.0336, wR2 = 0.0860
	R indices (all data)	R1 = 0.0497, wR2 = 0.0921
	Largest diff. peak and hole	0.462 and -0.230 e.A^-3
m = l= l ·		

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for as17040_a. U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

 	Х	У	Z	 U(eq)
C(1)	4550(2)	5403(1)	7448(1)	36(1)
C(2)	3427(2)	4180(2)	7647(2)	48(1)
C(3)	1878(3)	4425(2)	7817(2)	75(1)
C(4)	3027(3)	3239(2)	6687(2)	68(1)
C(5)	4148(3)	3603(2)	8626(2)	67(1)
C(6)	2595(2)	5941(2)	5857(2)	53(1)
C(7)	2965(4)	5957(3)	4800(2)	86(1)
C(8)	1831(3)	6949(3)	5995(2)	83(1)
C(9)	7351(3)	5572(2)	8705(2)	51(1)
C(10)	7994(4)	4684(3)	8164(2)	85(1)
C(11)	8695(3)	6727(3)	9233(2)	77(1)
C(12)	4606(3)	7922(2)	8862(2)	59(1)
C(13)	4633(3)	10256(2)	7848(2)	66(1)
C(15)	7636(3)	10036(3)	9463(2)	78(1)
C(16)	7309(5)	9462(3)	5308(2)	109(1)
C(17)	10040(3)	9612(4)	7247(4)	118(1)
C(18)	8045(5)	11397(2)	7013(3)	102(1)
N(1)	4097(2)	6112(1)	6694(1)	40(1)

N(2)	6103(2)	5967(1)	7949(1)	38(1)
$N(\Delta)$	6623(2)	9713 (1)	7331(1)	36(1)
N(4)	0023(2)	0713(1)	7331(1)	30(1)
S1(1)	5910(1)	9195(1)	8321(1)	40(I)
Si(2)	7944(1)	9744(1)	6766(1)	46(1)
Ge(1)	6402(1)	7075(1)	6788(1)	38(1)

Table S3.	Bond	lengths	[A]	and	angles	[deg]	for	as17040_a	•

C(1)-N(2)	1.335(2)
C(1) - N(1)	1.336(2)
C(1) - C(2)	1.533(2)
C(2) - C(5)	1 528(3)
C(2) - C(4)	1 542(3)
C(2) = C(3)	1 542(3)
C(2) $C(3)$	1.344(3)
C(3) = H(3A)	0.9700
C(3) = H(3B)	0.9700
C(3) = H(3C)	0.9700
C(4) - H(4A)	0.9700
C(4) - H(4B)	0.9700
C(4) - H(4C)	0.9700
C(5)-H(5A)	0.9700
С(5)-Н(5В)	0.9700
С(5)-Н(5С)	0.9700
C(6)-N(1)	1.461(2)
C(6)-C(8)	1.504(3)
C(6)-C(7)	1.512(4)
C(6)-H(6)	0.9900
С(7)-Н(7А)	0.9700
С(7)-Н(7В)	0.9700
С(7)-Н(7С)	0.9700
C(8)-H(8A)	0.9700
С(8)-Н(8В)	0.9700
С(8)-Н(8С)	0.9700
C(9)-N(2)	1.462(2)
C(9)-C(11)	1.515(3)
C(9)-C(10)	1.530(3)
С(9)-Н(9)	0.9900
C(10)-H(10A)	0.9700
С(10)-Н(10В)	0.9700
С(10)-Н(10С)	0.9700
С(11)-Н(11А)	0.9700
С(11)-Н(11В)	0.9700
С(11)-Н(11С)	0.9700
C(12)-Si(1)	1.858(2)
С(12)-Н(12А)	0.9700
С(12)-Н(12В)	0.9700
С(12)-Н(12С)	0.9700
C(13)-Si(1)	1.872(2)
C(13) - H(13A)	0.9700
C(13) - H(13B)	0,9700
C(13) - H(13C)	0 9700
C(15) - Si(1)	1 869(2)
C(15) - H(15A)	0 9700
C(15) = H(15R)	0 9700
	0.9700

C (15) $-H(15C)$ C (16) $-Si(2)$ C (16) $-H(16A)$ C (16) $-H(16B)$ C (16) $-H(16C)$ C (17) $-Si(2)$ C (17) $-H(17A)$ C (17) $-H(17B)$ C (17) $-H(17C)$ C (18) $-Si(2)$ C (18) $-H(18A)$ C (18) $-H(18A)$ C (18) $-H(18B)$ C (18) $-H(18B)$ C (18) $-H(18C)$ N (1) $-Ge(1)$ N (2) $-Ge(1)$ N (4) $-Si(2)$ N (4) $-Ge(1)$	0.9700 1.857(3) 0.9700 0.9700 1.854(3) 0.9700 0.9700 0.9700 1.859(3) 0.9700 0.9700 0.9700 0.9700 2.0066(15) 2.0146(14) 1.7350(14) 1.9086(13)
N (2) -C (1) -N (1) N (2) -C (1) -C (2) N (1) -C (1) -C (2) C (5) -C (2) -C (1) C (5) -C (2) -C (4) C (1) -C (2) -C (3) C (1) -C (2) -C (3) C (1) -C (2) -C (3) C (2) -C (3) -H (3A) C (2) -C (3) -H (3B) H (3A) -C (3) -H (3C) H (3A) -C (3) -H (3C) H (3B) -C (3) -H (3C) H (3B) -C (3) -H (3C) C (2) -C (4) -H (4B) H (4A) -C (4) -H (4B) C (2) -C (4) -H (4B) H (4A) -C (4) -H (4C) H (4B) -C (4) -H (4C) H (4B) -C (5) -H (5B) C (2) -C (5) -H (5B) H (5A) -C (5) -H (5B) H (5A) -C (5) -H (5C) H (5B) -C (5) -H (5C) H (5B) -C (5) -H (5C) H (5B) -C (5) -H (5C) N (1) -C (6) -C (7) C (8) -C (6) -C (7) N (1) -C (6) -H (6) C (7) -C (6) -H (6) C (7) -C (6) -H (7B) H (7A) -C (7) -H (7B) H (7A) -C (7) -H (7C) H (7B) -C (7) -H (7C)	106.79(14) 129.22(16) 123.98(15) 114.70(17) 107.78(18) 108.07(15) 105.90(19) 108.75(16) 111.7(2) 109.5 109.95 109.0 109.0 109.0 109.5 10

С(6)-С(8)-Н(8А)	109.5
С(6)-С(8)-Н(8В)	109.5
H(8A)-C(8)-H(8B)	109.5
С(6)-С(8)-Н(8С)	109.5
H (8A) -C (8) -H (8C)	109.5
H (8B) -C (8) -H (8C)	109.5
N(2) - C(9) - C(11)	107.59(17)
N(2) - C(9) - C(10)	111.12(1/)
C(11) - C(9) - C(10)	111.6(2)
N(2) - C(9) - H(9)	100.0
C(11) - C(9) - H(9)	100.0
C(10) - C(3) - H(10A)	100.0
C(9) - C(10) - H(10R)	109.5
H(10A) = C(10) = H(10B)	109.5
C(9) - C(10) - H(10C)	109.5
H(10A) - C(10) - H(10C)	109.5
H(10B) - C(10) - H(10C)	109.5
C(9)-C(11)-H(11A)	109.5
С(9)-С(11)-Н(11В)	109.5
H(11A)-C(11)-H(11B)	109.5
С(9)-С(11)-Н(11С)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
Si(1)-C(12)-H(12A)	109.5
Si(1)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
Si(1)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H (12B) -C (12) -H (12C)	109.5
$S_1(1) - C(13) - H(13A)$	109.5
S1(1) - C(13) - H(13B)	109.5
H(I3A) = C(I3) = H(I3B)	109.5
SI(1) = C(13) = H(13C)	109.5
H(13R) = C(13) = H(13C)	109.5
H(13B) = C(15) = H(15C) Si (1) = C(15) = H(15A)	109.5
Si(1) - C(15) - H(15R)	109.5
H(15A) - C(15) - H(15B)	109.5
Si(1) - C(15) - H(15C)	109.5
H(15A) -C(15) -H(15C)	109.5
Н (15В) -С (15) -Н (15С)	109.5
Si(2)-C(16)-H(16A)	109.5
Si(2)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
Si(2)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
Si(2)-C(17)-H(17A)	109.5
Si(2)-C(17)-H(17B)	109.5
H(1/A) - C(1/) - H(1/B)	109.5
S1(2) - C(17) - H(17C)	109.5
$\Pi (I / A) = C (I /) = H (I / C)$ $\Pi (1 / B) = C (1 / C) = \Pi (1 / C)$	109.3
$\Pi (\perp /D) = \cup (\perp /) = \Pi (\perp / \cup)$ $G_1 (2) = O (18) = \Pi (18)$	109.3
$S_{1}(2) = C(10) = \Pi(10A)$ $S_{1}(2) = C(18) = \Pi(18B)$	109.J
H(18A) - C(18) - H(18B)	109.5
Si(2) - C(18) - H(18C)	109.5

H(18A)-C(18)-H(18C)	109.5
Н(18В)-С(18)-Н(18С)	109.5
C(1)-N(1)-C(6)	132.16(15)
C(1)-N(1)-Ge(1)	93.02(10)
C(6)-N(1)-Ge(1)	131.17(13)
C(1)-N(2)-C(9)	133.10(16)
C(1)-N(2)-Ge(1)	92.69(10)
C(9)-N(2)-Ge(1)	127.65(12)
Si(1)-N(4)-Si(2)	122.02(8)
Si(1)-N(4)-Ge(1)	129.75(8)
Si(2)-N(4)-Ge(1)	107.80(7)
N(4)-Si(1)-C(12)	114.64(8)
N(4)-Si(1)-C(15)	110.85(10)
C(12)-Si(1)-C(15)	106.05(13)
N(4)-Si(1)-C(13)	111.50(10)
C(12)-Si(1)-C(13)	105.27(12)
C(15)-Si(1)-C(13)	108.12(13)
N(4)-Si(2)-C(17)	110.84(12)
N(4)-Si(2)-C(16)	111.66(11)
C(17)-Si(2)-C(16)	108.2(2)
N(4)-Si(2)-C(18)	114.35(11)
C(17)-Si(2)-C(18)	107.53(18)
C(16)-Si(2)-C(18)	103.86(17)
N(4)-Ge(1)-N(1)	105.13(6)
N(4)-Ge(1)-N(2)	106.80(6)
N(1)-Ge(1)-N(2)	64.44(6)

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (A^2 \times 10^3) for as17040_a.

The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

U12	U11	U22	U33	U23	U13	
C(1)	44(1)	29(1)	39(1)	1(1)	15(1)	
C(2)	59(1)	31(1)	56(1)	5(1)	25(1)	
7(1)	(2)(1)	E O (1)	107(0)	10(1)	45(1)	
2(1)	62(I)	58(1)	107(2)	10(1)	45(I)	
C(4)	94(2)	32(1)	67(1)	-4(1)	24(1)	
0(1)						
C(5)	99(2)	44(1)	62(1)	17(1)	35(1)	
13(1)						
C(6)	49(1)	40(1)	55(1)	-2(1)	-6(1)	
9(1)						
C(7) 40(2)	98(2)	106(2)	44(1)	-5(1)	-10(1)	

C(8)	72(2)	84(2)	85(2)	-9(1)	-12(1)	
44(1)						
C(9)	57(1)	59(1)	46(1)	10(1)	12(1)	
33(1) C(10)	100(2)	109(2)	80(2)	21(2)	29(2)	
81(2)						
C(11)	52(1)	96(2)	68(2)	11(1)	-7(1)	
ZI(I) C(12)	77(1)	59(1)	56(1)	5(1)	36(1)	
25(1)						
C(13)	66(1)	63(1)	83(2)	8(1)	23(1)	
C(15)	68(1)	93(2)	60(1)	-34(1)	-2(1)	
23(1)						
C(16)	164(3)	78(2)	63(2)	17(1)	43(2)	-
C(17)	48(1)	124(3)	192(4)	66(3)	49(2)	
22(2)						
C(18)	131(3)	37(1)	142(3)	4(2)	73(2)	-
∠(1) N(1)	41(1)	31(1)	41(1)	1(1)	4(1)	
6(1)						
N(2)	41(1)	35(1)	43(1)	7(1)	11(1)	
17(1)				0 (1)		
N(4) 7(1)	37(1)	30(1)	42(1)	-2(1)	12(1)	
Si(1)	40(1)	40(1)	42(1)	-6(1)	9(1)	
15(1) Si(2)	44(1)	35(1)	57(1)	4(1)	18(1)	
4(1)	. ,	. ,	. ,	. ,		
Ge(1) 11(1)	44(1)	30(1)	42(1)	1(1)	19(1)	
(_ /						

Crystallographic data of 2b

Figure S26 : Asymmetric Unit

Table S5. Crystal data and structure refinement for AS090616.

	Identification code		AS090616	
	Empirical formula	C21 H41 Fe Ge N3 O4 Si2		
	Formula weight	584.21		
	Temperature	193(2) K		
	Wavelength	0.71073 A		
	Crystal system, space grou	qı	monoclinic,	P 21/c
	Unit cell dimensions	a = 14. b = 12.	2986(10) A 8496(8) A	alpha = 90 deg. beta = 96.027(2)
deg.		c = 15.	7161(10) A	gamma = 90 deg.
	Volume		2871.6(3) A	^3
	Z, Calculated density	4, 1.351 Mg/m^3		
	Absorption coefficient	1.664 mm^-1		
	F(000)	1224		
	Crystal size	0.36 x 0.20 x 0.06 mm		
	Theta range for data colle	ection	3.05 to 32.0	03 deg.

	Limiting indices	-21<=h<=21, -19<=k<=19, -23<=1<=23
	Reflections collected / unique	119176 / 9985 [R(int) = 0.0440]
	Completeness to theta = 32.03	99.8 %
	Max. and min. transmission	0.7465 and 0.6654
F^2	Refinement method	Full-matrix least-squares on
	Data / restraints / parameters	9985 / 0 / 302
	Goodness-of-fit on F^2	1.047
	Final R indices [I>2sigma(I)]	R1 = 0.0256, $wR2 = 0.0600$
	R indices (all data)	R1 = 0.0379, $wR2 = 0.0662$
	Largest diff. peak and hole	0.474 and -0.465 e.A^-3
Table	S6. Atomic coordinates (x 10^4)	and equivalent isotropic

displacement parameters (A² x 10³) for as. U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

	х	У	Z	U(eq)
C (1)	198(1)	131(1)	2315(1)	30 (1) 32 (1)
C (3)	1847 (1) 1408 (1)	-294(1)	3718(1)	31(1)
C (5)	2697(1)	2271 (1)	1550(1)	22(1)
C (7) C (8)	2458 (1) 4051 (1)	3985(1) 3335(1)	689(1) 1102(1)	42(1)
C (9)	3043 (1) 1075 (1)	4003(1)	2234(1)	43(1)
C (12)	607 (1) 384 (1)	1237 (1) 2740 (1)	192 (1) 1171 (1)	31(1)
C (12) C (13) C (14)	4043(1)	1653(1)	2639(1)	31(1)
C (15)	3888 (1) 3216 (1)	1442 (2) 852 (1)	3564(1) -35(1)	52 (1) 36 (1)
C (17)	4176(1)	-1103(2) -1126(2)	492 (1)	43(1)
C (10) C (19) C (20)	2564 (2) 1274 (1)	-2891 (1) -2149 (1)	1030(1) 2203(1)	43(1) 52(1) 35(1)
\cup ($\angle \perp$)	34⊥U(⊥)	-1910(1)	2000(I)	43(I)

N(1)	1906(1)	1801(1)	1208(1)	19(1)
N(2)	3153(1)	1581(1)	2085(1)	23(1)
N(3)	2445(1)	-550(1)	1327(1)	21(1)
0(1)	-433(1)	-157(1)	1863(1)	48(1)
0(2)	-265(1)	786(1)	4307(1)	52(1)
0(3)	2287(1)	-847(1)	4170(1)	52(1)
O(4)	1572(1)	2800(1)	3337(1)	44(1)
Si(1)	2973(1)	-482(1)	362(1)	26(1)
Si(2)	2413(1)	-1804(1)	1798(1)	26(1)
Fe(1)	1118(1)	592(1)	3074(1)	20(1)
Ge(1)	2097(1)	584(1)	1961(1)	17(1)

Table S7. Bond lengths [A] and angles [deg] for as.

C(1) = O(1)	1 1/00/18)
C(1) = C(1)	1, 7916(15)
C(1) - Fe(1)	1.7010(13)
C(2) = O(2)	1.1451(19)
C(2)-Fe(1)	1.7770(15)
C(3)-O(3)	1.1457(18)
C(3)-Fe(1)	1.7842(15)
C(4)-O(4)	1.1478(17)
C(4)-Fe(1)	1.7838(14)
C(5)-N(2)	1.3435(16)
C(5)-N(1)	1.3436(15)
C(5)-C(6)	1.5395(18)
C(6) - C(7)	1.535(2)
C(6) - C(8)	1.545(2)
C(6) - C(9)	1.547(2)
C(7) - H(7A)	0 9800
C(7) - H(7B)	0 9800
C(7) - H(7C)	0 9800
C(8) - H(8A)	0 9800
C(8) = H(8B)	0.9800
C(8) - H(8C)	0.9800
C(0) = H(02)	0.9800
C(9) = H(9R)	0.9800
C(9) - H(9B)	0.9800
C(9) = H(9C)	0.9800
C(10) = N(1)	1.4/43(13)
C(10) - C(11)	1.5211(19)
C(10) - C(12)	1.5291(19)
С(10)-Н(10)	1.0000
C(11)-H(11A)	0.9800
С(11)-Н(11В)	0.9800
C(11)-H(11C)	0.9800
C(12)-H(12A)	0.9800
С(12)-Н(12В)	0.9800
C(12)-H(12C)	0.9800
C(13)-N(2)	1.4671(16)
C(13)-C(14)	1.517(2)
C(13)-C(15)	1.518(2)
С(13)-Н(13)	1.0000
С(14)-Н(14А)	0.9800
C(14)-H(14B)	0.9800

C(14)-H(14C)	0.9800
С(15)-Н(15А)	0.9800
С(15)-Н(15В)	0.9800
C(15) = H(15C)	0.9800
C(16) - SI(1)	1.0009(10)
C(16) = H(16R)	0.9800
C(16) - H(16C)	0.9800
C(17)-Si(1)	1.8875(16)
С(17)-Н(17А)	0.9800
С(17)-Н(17В)	0.9800
С(17)-Н(17С)	0.9800
C(18)-Si(1)	1.8693(17)
C(18)-H(18A)	0.9800
C(18) - H(18C)	0.9800
C(19) - Si(2)	1 8734(17)
C(19) - H(19A)	0.9800
C(19)-H(19B)	0.9800
С(19)-Н(19С)	0.9800
C(20)-Si(2)	1.8640(15)
С(20)-Н(20А)	0.9800
С (20) -Н (20В)	0.9800
C (20) -H (20C)	0.9800
C(21) = S1(2) C(21) = H(21)	1.8/16(1/)
C(21) - H(21R)	0.9800
C(21) -H(21C)	0.9800
N(1)-Ge(1)	1.9618(10)
N(2)-Ge(1)	1.9737(10)
N(3)-Si(1)	1.7658(11)
N(3)-Si(2)	1.7750(11)
N(3)-Ge(1)	1.8631(10)
Fe(1)-Ge(1)	2.3518(2)
O(1) - C(1) - Fe(1)	175,81(14)
O(2) - C(2) - Fe(1)	177.71(15)
O(3)-C(3)-Fe(1)	176.13(14)
O(4)-C(4)-Fe(1)	176.11(13)
N(2) - C(5) - N(1)	106.61(10)
N(2) - C(5) - C(6)	124.29(11)
N(1) = C(5) = C(6)	129.10(11)
C(7) = C(6) = C(3)	105 30(13)
C(5) - C(6) - C(8)	110.19(12)
C(7) - C(6) - C(9)	107.36(13)
C(5)-C(6)-C(9)	108.08(12)
C(8)-C(6)-C(9)	111.29(13)
С(6)-С(7)-Н(7А)	109.5
C(6) - C(7) - H(7B)	109.5
n(A) = C(A) = H(B) C(A) = C(A) = H(A)	109.3 109.5
H(7A) - C(7) - H(7C)	109.5
H(7B) - C(7) - H(7C)	109.5
С(6)-С(8)-Н(8А)	109.5
С(6)-С(8)-Н(8В)	109.5
H(8A)-C(8)-H(8B)	109.5
C(6)-C(8)-H(8C)	109.5

H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
С(6)-С(9)-Н(9А)	109.5
C(6) - C(9) - H(9B)	109.5
H(9A) = C(9) = H(9B) C(6) = C(9) = H(9C)	109.5
H(9A) - C(9) - H(9C)	109.5
H(9B) - C(9) - H(9C)	109.5
N(1) - C(10) - C(11)	108.36(10)
N(1)-C(10)-C(12)	111.50(11)
C(11)-C(10)-C(12)	110.75(12)
N(1)-C(10)-H(10)	108.7
C(11) - C(10) - H(10)	108.7
C(12) = C(10) = H(10) C(10) = C(11) = H(110)	108.7
C(10) - C(11) - H(11B)	109.5
H(11A) - C(11) - H(11B)	109.5
С(10)-С(11)-Н(11С)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(10) - C(12) - H(12A)	109.5
C(10) = C(12) = H(12B) H(12A) = C(12) = H(12B)	109.5
C(10) - C(12) - H(12C)	109.5
H(12A) -C(12) -H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
N(2)-C(13)-C(14)	109.80(13)
N(2) - C(13) - C(15)	110.63(12)
C(14) - C(13) - C(15)	111.03(15)
N(2) = C(13) = H(13) C(14) = C(13) = H(13)	108.4
C(15) - C(13) - H(13)	108.4
С(13)-С(14)-Н(14А)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(13) - C(14) - H(14C)	109.5
H(14R) - C(14) - H(14C) H(14R) - C(14) - H(14C)	109.5
C(13) - C(15) - H(15A)	109.5
С(13) –С(15) –Н(15В)	109.5
H(15A)-C(15)-H(15B)	109.5
С(13)-С(15)-Н(15С)	109.5
H (15A) -C (15) -H (15C)	109.5
H(15B) - C(15) - H(15C)	109.5
Si(1) = C(16) = H(16R) Si(1) = C(16) = H(16R)	109.5
H(16A) - C(16) - H(16B)	109.5
Si(1)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
Н(16В) -С(16) -Н(16С)	109.5
$S_1(1) - C(17) - H(17A)$	109.5
$S_{+}(1) = C(1/) = H(1/B)$ H(17A) = C(17) = H(17B)	109.5 109.5
Si(1) - C(17) - H(17C)	109.5
H(17A) - C(17) - H(17C)	109.5
Н(17В)-С(17)-Н(17С)	109.5
Si(1)-C(18)-H(18A)	109.5
Si(1)-C(18)-H(18B)	109.5

H(18A)-C(18)-H(18B)	109.5
Si(1)-C(18)-H(18C)	109.5
Н(18А)-С(18)-Н(18С)	109.5
Н(18В)-С(18)-Н(18С)	109.5
Si(2)-C(19)-H(19A)	109.5
Si(2)-C(19)-H(19B)	109.5
Н(19А)-С(19)-Н(19В)	109.5
Si(2)-C(19)-H(19C)	109.5
Н(19А)-С(19)-Н(19С)	109.5
Н(19В)-С(19)-Н(19С)	109.5
Si(2)-C(20)-H(20A)	109.5
Si(2)-C(20)-H(20B)	109.5
Н(20А)-С(20)-Н(20В)	109.5
Si(2)-C(20)-H(20C)	109.5
Н(20А)-С(20)-Н(20С)	109.5
Н(20В)-С(20)-Н(20С)	109.5
Si(2)-C(21)-H(21A)	109.5
Si(2)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
Si(2)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
Н(21В)-С(21)-Н(21С)	109.5
C(5)-N(1)-C(10)	133.04(11)
C(5)-N(1)-Ge(1)	93.42(7)
C(10)-N(1)-Ge(1)	131.65(8)
C(5)-N(2)-C(13)	131.54(11)
C(5)-N(2)-Ge(1)	92.90(7)
C(13)-N(2)-Ge(1)	134.97(9)
Si(1)-N(3)-Si(2)	115.82(6)
Si(1)-N(3)-Ge(1)	125.66(6)
Si(2)-N(3)-Ge(1)	117.82(6)
N(3) - Si(1) - C(16)	116.29(6)
N(3) - Si(1) - C(18)	111.17(7)
C(16) - Si(1) - C(18)	105.46(8)
N(3) - Si(1) - C(17)	110.66(7)
C(16) - Si(1) - C(17)	103.03(8)
C(18) - Si(1) - C(17)	109.77(9)
N(3) - S1(2) - C(20)	114.8/(6)
N(3) - S1(2) - C(21)	108./9(/)
C(20) - S1(2) - C(21)	111.02(8)
N(3) - S1(2) - C(19)	113.46(7)
C(20) - S1(2) - C(19)	101.94(8)
C(21) - S1(2) - C(19)	106.34(10)
C(2) = Fe(1) = C(1)	88.84(7)
C(2) - Fe(1) - C(4)	90.41(7)
C(1) - re(1) - C(4)	123.13(7)
C(2) - Fe(1) - C(3)	33.30(7)
C(1) - Fe(1) - C(3)	120.94(7) 115.95(7)
$C(4) = F_{0}(1) - C_{0}(1)$	173.00(7)
$C(1) - F_{P}(1) - G_{P}(1)$	87 49(5)
$C(4) - F_{P}(1) - G_{P}(1)$	86 71 (4)
C(3) - Fe(1) - Ge(1)	93 54 (5)
N(3) - Ge(1) - N(1)	109,21(5)
N(3) - Ge(1) - N(2)	108.39(5)
N(1) - Ge(1) - N(2)	66.39(4)
N(3) - Ge(1) - Fe(1)	127.92(3)
N(1) - Ge(1) - Fe(1)	112.90(3)
	· /

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement parameters (A^2 x 10^3) for as. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

U12	U11	U22	U33	U23	U13	
C(1)	31(1)	31(1)	28(1)	2(1)	6(1)	
C(2)	37(1)	32(1)	28(1)	1(1)	9(1)	
C(3)	42(1)	27(1)	24(1)	0(1)	4(1)	
2(1) C(4)	35(1)	26(1)	25(1)	-2(1)	8(1)	
1(1) C(5)	23(1)	18(1)	23(1)	2(1)	1(1)	_
2(1) C(6)	36(1)	19(1)	33(1)	5(1)	-2(1)	_
8(1) C(7)	52(1)	25(1)	46(1)	14(1)	-7(1)	_
6(1) C(8)	41(1)	37(1)	51(1)	11(1)	5(1)	-
16(1) C(9)	61(1)	24(1)	43(1)	-3(1)	0(1)	_
13(1) C(10)	22(1)	25(1)	21(1)	4(1)	0(1)	
4(1) C(11)	26(1)	37(1)	27(1)	-2(1)	-4(1)	_
2 (1) C (12)	34(1)	38(1)	34(1)	4(1)	6(1)	
16(1)	04(1)	20(1)	$2 \leq (1)$	- (1)	0(1)	
7 (1)	∠4(⊥)	29(1)	30(I)	5(1)	-9(1)	-
C(14) 4(1)	25(1)	47(1)	70(1)	2(1)	-8(1)	
C(15)	42(1)	77(1)	34(1)	11(1)	-14(1)	-
C(16)	36(1)	37(1)	37(1)	8(1)	18(1)	
4(1) C(17)	29(1)	46(1)	57(1)	5(1)	17(1)	
9(1) C(18)	49(1)	49(1)	33(1)	-11(1)	5(1)	
5(1)				±±(±)		
C(19) 2(1)	/8(1)	23(1)	60(1)	-11(1)	33(1)	-

C(20)	38(1)	24(1)	45(1)	-2(1)	14(1)	-
C(21)	38(1)	39(1)	51(1)	15(1)	1(1)	
L)	10(1)	10(1)	01 (1)	0 (1)	0 (1)	
N(1)	19(1)	18(1)	21(1)	2(1)	Ο(Ι)	
N(2)	21(1)	21(1)	25(1)	4(1)	-4(1)	-
N(3)	22(1)	17(1)	24(1)	-1(1)	6(1)	
0(1)	40(1)	59(1)	43(1)	-1(1)	-7(1)	-
L)						
0(2)	56(1)	64(1)	42(1)	3(1)	26(1)	
			0.4.4.5		- (4)	
0(3)	78(1)	42(1)	34(1)	(1)	-5(1)	
(4)	60(1)	25(1)	10(1)	_9(1)	12(1)	_
0(4)	00(1)	23(1)	49(1)	-0(1)	12(1)	
Si(1)	23(1)	28(1)	27(1)	0(1)	9(1)	
Si(2)	30(1)	16(1)	32(1)	0(1)	8(1)	
	0 = (1)			0.44		
Fe(1)	25(1)	19(1)	18(1)	0(1)	4(1)	
$C_{2}(1)$	10(1)	1 5 (1)	10(1)	1 (1)	1 (1)	
Ge(I)	10(1)	1J(1)	10(1)	⊥ (⊥)	⊥ (⊥)	-
	C(20) C(21) N(1) N(2) N(3) O(1) O(2) O(3) O(4) Si(1) Si(2) Fe(1) Ge(1)	C (20) 38 (1) C (21) 38 (1) N (1) 19 (1) N (2) 21 (1) N (3) 22 (1) O (1) 40 (1) O (2) 56 (1) O (3) 78 (1) O (4) 60 (1) Si (1) 23 (1) Si (2) 30 (1) Fe (1) 25 (1) Ge (1) 18 (1)	C (20) 38 (1) 24 (1) C (21) 38 (1) 39 (1) N (1) 19 (1) 18 (1) N (2) 21 (1) 21 (1) N (3) 22 (1) 17 (1) O (1) 40 (1) 59 (1) O (1) 40 (1) 59 (1) O (2) 56 (1) 64 (1) O (3) 78 (1) 42 (1) O (4) 60 (1) 25 (1) Si (1) 23 (1) 28 (1) Si (2) 30 (1) 16 (1) Fe (1) 25 (1) 19 (1) Ge (1) 18 (1) 15 (1)	C (20)38 (1)24 (1)45 (1)C (21)38 (1)39 (1)51 (1)N (1)19 (1)18 (1)21 (1)N (2)21 (1)21 (1)25 (1)N (3)22 (1)17 (1)24 (1)O (1)40 (1)59 (1)43 (1)O (1)40 (1)59 (1)43 (1)O (2)56 (1)64 (1)42 (1)O (3)78 (1)42 (1)34 (1)O (4)60 (1)25 (1)49 (1)Si (1)23 (1)28 (1)27 (1)Si (2)30 (1)16 (1)32 (1)Fe (1)25 (1)19 (1)18 (1)Ge (1)18 (1)15 (1)18 (1)	C (20) $38(1)$ $24(1)$ $45(1)$ $-2(1)$ C (21) $38(1)$ $39(1)$ $51(1)$ $15(1)$ N(1) $19(1)$ $18(1)$ $21(1)$ $2(1)$ N(2) $21(1)$ $21(1)$ $25(1)$ $4(1)$ N(3) $22(1)$ $17(1)$ $24(1)$ $-1(1)$ O (1) $40(1)$ $59(1)$ $43(1)$ $-1(1)$ O (1) $40(1)$ $59(1)$ $43(1)$ $-1(1)$ O (2) $56(1)$ $64(1)$ $42(1)$ $3(1)$ O (3) $78(1)$ $42(1)$ $34(1)$ $7(1)$ O (4) $60(1)$ $25(1)$ $49(1)$ $-8(1)$ Si (1) $23(1)$ $28(1)$ $27(1)$ $0(1)$ Si (2) $30(1)$ $16(1)$ $32(1)$ $0(1)$ Fe (1) $25(1)$ $19(1)$ $18(1)$ $0(1)$	C (20) $38(1)$ $24(1)$ $45(1)$ $-2(1)$ $14(1)$ C (21) $38(1)$ $39(1)$ $51(1)$ $15(1)$ $1(1)$ N (1) $19(1)$ $18(1)$ $21(1)$ $2(1)$ $0(1)$ N (2) $21(1)$ $21(1)$ $25(1)$ $4(1)$ $-4(1)$ N (3) $22(1)$ $17(1)$ $24(1)$ $-1(1)$ $6(1)$ O (1) $40(1)$ $59(1)$ $43(1)$ $-1(1)$ $-7(1)$ O (2) $56(1)$ $64(1)$ $42(1)$ $3(1)$ $26(1)$ O (3) $78(1)$ $42(1)$ $34(1)$ $7(1)$ $-5(1)$ O (4) $60(1)$ $25(1)$ $49(1)$ $-8(1)$ $12(1)$ Si (1) $23(1)$ $28(1)$ $27(1)$ $0(1)$ $8(1)$ Fe (1) $25(1)$ $19(1)$ $18(1)$ $0(1)$ $4(1)$ Ge (1) $18(1)$ $15(1)$ $18(1)$ $1(1)$ $1(1)$

Computational results, coordinates

2a

Sum of electronic and thermal Enthalpies = -3661.497482Sum of electronic and thermal Free Energies = -3661.591637C $1.28649700 \quad 0.01746600 \quad -1.89493200$

•	1.200.2700	0.01/.0000	1.07 .75 - 00
С	2.60537000	-1.53870700	0.41888700
С	3.74220400	-0.04019100	-1.31525700
С	2.68096800	1.46131900	0.45790100
С	-2.07766000	0.07744000	-0.11370200
С	-3.50247000	0.06074800	-0.66480100
С	-3.49140400	-0.63307100	-2.03604900
Н	-2.86406800	-0.08520100	-2.73981700
Н	-4.50736000	-0.64910700	-2.43301900

Н	-3.13171300	-1.65692800	-1.99970300
С	-4.40603200	-0.67843300	0.33574700
Н	-4.10247600	-1.70470100	0.52231600
Н	-5.42427400	-0.69710600	-0.05525200
Н	-4.42419500	-0.15706000	1.29328700
С	-4.12621700	1.44087200	-0.87459800
Н	-4.28117400	1.97301400	0.06252900
Н	-5.10906400	1.29430600	-1.32409900
Н	-3.54984300	2.06639700	-1.55337700
С	-1.61569100	-2.44593000	-0.05673000
Н	-2.65895500	-2.58045100	-0.33636200
С	-0.74893600	-3.02489800	-1.16803600
Н	-0.92070300	-2.51604500	-2.11604700
Н	-0.96816800	-4.08514500	-1.29862000
Н	0.30930500	-2.92805500	-0.92398700
С	-1.38456300	-3.17402700	1.26004400
Н	-0.34648100	-3.07681600	1.58123300
Н	-1.59959400	-4.23646700	1.14293000
Н	-2.01721600	-2.77344500	2.05121900
С	-1.46640600	2.56901500	0.16054100
Н	-2.51826200	2.82780200	0.23786700
С	-0.91485300	3.10554700	-1.15445400
Н	0.14876600	2.88040900	-1.24132200
Н	-1.03801600	4.18823600	-1.20221400
Н	-1.42032100	2.66468200	-2.01381600
С	-0.75530700	3.19610700	1.35021300
Н	-1.15214700	2.81967800	2.29172400
Н	-0.87956300	4.27868800	1.32632700
Н	0.31619100	2.98998700	1.32573600
Ν	-1.35704400	-1.02481900	0.11328000
Ν	-1.32700300	1.12195100	0.23999800
0	0.67861500	0.03654200	-2.87208600
0	2.86655000	-2.52986500	0.93484900
0	4.71853700	-0.05553900	-1.90838000
0	2.99862800	2.42126700	1.00088700
Cl	0.06371700	-0.12541800	2.85501700
Fe	2.23407100	-0.01725600	-0.40585800
Ge	0.20959300	-0.00858200	0.67111600

2b

Sum of electronic and thermal Enthalpies = -4075.797114Sum of electronic and thermal Free Energies = -4075.918164

С	-0.78709900	2.41577300	-1.64203000
С	-0.07242100	4.25507300	-0.08690300
С	-1.02963700	2.51439700	1.46201400
С	1.65991700	2.42532200	0.16244500
С	2.08675300	-0.95501400	0.06742900
С	3.51981300	-1.48952900	0.21006300
С	4.25283700	-1.74485300	-1.10927300
Н	3.77318000	-2.52106200	-1.70374500
Н	5.25386700	-2.10338300	-0.86491100
Н	4.37120500	-0.84850500	-1.71316800
С	3.50691500	-2.84712600	0.93430300
Н	3.04003400	-3.60990500	0.31231500
Η	2.99323600	-2.83937600	1.89110200
Н	4.53891500	-3.15105200	1.11522900
С	4.35602800	-0.46087900	0.98826600
Н	5.37044700	-0.84719800	1.09890700
Η	3.96912000	-0.25166500	1.98173700
Н	4.40761800	0.48505600	0.45170900
С	1.79063400	-0.56571400	-2.44997900
Н	2.47873500	-1.37757000	-2.67203800
С	0.55402600	-0.77937900	-3.30967500

Н	0.10842400	-1.75706800	-3.13461000
Η	0.82292600	-0.71412800	-4.36399800
Н	-0.20035700	-0.01561000	-3.11733700
С	2.45958800	0.75765700	-2.80355600
Н	1.76428900	1.58487700	-2.66578100
Н	2.77759600	0.74765000	-3.84707200
Н	3.33120800	0.95370900	-2.18044900
С	1.48049800	-0.83578300	2.53989400
Н	2.46232800	-1.26725800	2.72193900
С	0.43799600	-1.77199100	3.13540100
Н	-0.56791600	-1.40116100	2.93446500
Н	0.56286700	-1.84144900	4.21638300
Н	0.51824000	-2.77509700	2.71640800
С	1.44673700	0.52222000	3.22810900
Н	2.18357300	1.20309700	2.80476800
Н	1.65932800	0.39992500	4.29096600
Н	0.46639500	0.98816600	3.13787800
C	0 22490900	-3 50238000	-0 50238800
Ĥ	0.80813100	-3 19802500	-1 36810600
Н	0.06957900	-4 58245300	-0 56804900
Н	0.80245900	-3 30794800	0 39722300
C	-2 31471300	-3 69079900	0.98051000
н	-1 71333300	-3 61284700	1 88781900
Н	-2 36888900	-4 74918900	0.71400400
Н	-3 32228900	-3 36153900	1 22352400
C	-2 29374200	-3 23149000	-2 07397100
н	-3 37396600	-3 34227200	-2 01069100
н	-1 88227600	-4 18969400	-2 39920200
Н	-2 08204500	-2 49876100	-2.85350000
C	-4 56798100	-1 45910700	-0 53029200
н	-4 55899300	-1 41081100	-1 61929900
Н	-5 50987700	-1.01560300	-0.19648100
н	-4 58161300	-2 50441000	-0.12040100
II C	-3 6217/200	1 30025700	-0.50986900
н	-3.06852700	2 12964600	-0.08110300
Ц	-5.00852700	1 46878800	0.32603300
н	-3.46961900	1 31/00300	-1.58936100
II C	3 46070300	0.34883000	2 07724800
ч	3 3 2 3 6 8 0 0 0	1 23765400	2.07724800
н Н	-1 18930100	-1.33703400 -0.03182400	2.31410700
п п	2 70502600	-0.03182400	2.30782800
П N	-2.79392000	0.54045400	2.37740300
IN N	1.413/8000	-0.04214300	-1.04324000
IN N	1.27000000	-0./1023400	0.16017000
N O	-1.3/248000	-0.9930/300	-0.1001/900
0	-1.21930900	2.40240400	-2.70090300
0	-0.00339000	3.37602000	-0.12041900
0	-1.01323800	2.30189300	2.4308/400
0 c:	2.8040/200	2.43333400	0.28808000
51	-1.494/1000	-2./4882300	-0.433/3400
51 Ee	-5.21225/00	-0.5/15/100	0.21313100
ге	-0.0806/900	2.499/4000	-0.025/4900
UC	-0.07773700	0.14093800	-0.03083/00

Sum of electronic and thermal Enthalpies = -544.173165 Sum of electronic and thermal Free Energies = -544.231920 C 0.04620400 -0.15067300 -0.04520000

С	-0.06689700	1.40043000	-0.10620500
С	-0.74916400	1.89628000	1.17958000
Н	-1.71807100	1.44537700	1.37094900
Н	-0.89056200	2.97775600	1.12344800
Н	-0.11465600	1.69049500	2.04340800
С	-0.85051900	1.80721100	-1.36402800
Н	-1.84976000	1.38681600	-1.41836400
Н	-0.31168700	1.49514700	-2.26025900
Н	-0.94567800	2.89469500	-1.39703600
С	1.25212500	2.17569000	-0.18238600
Н	1.01517300	3.24103900	-0.13689700
Н	1.78373400	2.00946000	-1.11811100
Н	1.91823600	1.95968700	0.65109500
С	2.52594600	-0.55124800	-0.10975700
Н	2.73859800	0.43393800	-0.52125100
С	3.08262600	-0.61030500	1.31453700
Н	2.63298700	0.15163600	1.95208600
Н	4.16234800	-0.45526100	1.30016500
Н	2.87301100	-1.58584600	1.75386500
С	3.21804500	-1.58803600	-0.98982600
Н	3.05542200	-2.58892700	-0.58981000
Н	4.29081600	-1.39209600	-1.03733900
Н	2.81937000	-1.56240100	-2.00402900
С	-2.42146100	-0.58525600	0.05720300
Н	-2.63984000	0.48463500	0.02220700
С	-3.00362500	-1.14522500	1.35493200
Н	-2.81652300	-2.21717900	1.41358600
Н	-4.07981200	-0.96843700	1.39023500
Н	-2.54789800	-0.67489600	2.22671400
С	-3.08928900	-1.24418700	-1.14963300
Н	-2.69645900	-0.84353000	-2.08445300
Н	-4.16623400	-1.07016300	-1.12470800
Н	-2.90173500	-2.31766900	-1.13736900
Ν	1.13587500	-0.90348500	-0.04950300
Ν	-1.03226300	-0.94256800	0.02472800

Cl

Sum of electronic and thermal Enthalpies = -460.490975 Sum of electronic and thermal Free Energies = -460.509012

Sum of electronic and thermal Enthalpies = -3200.860862 Sum of electronic and thermal Free Energies = -3200.952794 C -1.16913900 0.00030100 1.53290800 C -2.67732200 -1.58739700 -0.60398000 C -3.69033400 -0.04671800 1.19931100 C -2.75533100 1.46583200 -0.65962600 C 2.05849100 0.07274400 -0.06088800 C 3.49542700 0.05230700 0.45944600 C 3.51723500 -0.68636100 1.80691300

Н	2.89208100	-0.17081900	2.53635500
Η	4.53952300	-0.70251400	2.18787700
Н	3.16946300	-1.71316400	1.74214400
С	4.39196400	-0.64333100	-0.57730900
Н	4.09643700	-1.66711300	-0.79042600
Η	5.41731700	-0.66329100	-0.20449600
Η	4.38955600	-0.09183500	-1.51831100
С	4.10507200	1.43260400	0.70758500
Η	4.25366100	1.99302200	-0.21401700
Η	5.08966400	1.28602300	1.15370400
Η	3.51995900	2.03225100	1.40222800
С	1.61292000	-2.44784200	-0.19821900
Η	2.66250900	-2.59204900	0.05412400
С	0.76974300	-3.09391200	0.89421500
Η	0.94650200	-2.62401100	1.86102900
Η	1.00588300	-4.15574900	0.97422900
Η	-0.29267900	-2.99978900	0.66761900
С	1.36267500	-3.10520900	-1.54930900
Η	0.31998600	-2.98072600	-1.84877400
Η	1.56746600	-4.17486300	-1.49770700
Η	1.99228700	-2.66765600	-2.32423600
С	1.43984000	2.56197000	-0.32091800
Η	2.49078400	2.82654400	-0.40174500
С	0.88912500	3.11037500	0.98989700
Η	-0.17481400	2.88823800	1.07775900
Η	1.01769900	4.19282400	1.03207700
Н	1.39154400	2.67054300	1.85124300
С	0.72481200	3.18013300	-1.51397400
Н	1.13137200	2.80627800	-2.45358700
Н	0.83633400	4.26430900	-1.49754700
Η	-0.34446600	2.96158500	-1.48917400
Ν	1.33298200	-1.02686100	-0.28975300
Ν	1.29550700	1.11759900	-0.38933900
0	-0.49368900	0.02132800	2.46812000
0	-2.95793800	-2.59577400	-1.07562700
0	-4.60973000	-0.05436400	1.87881900
0	-3.09482400	2.43810100	-1.16745500
Fe	-2.26258400	-0.03478800	0.15835400
Ge	-0.20912300	-0.01612500	-0.97284700

Sum of electronic and thermal Enthalpies = -874.836568 Sum of electronic and thermal Free Energies = -874.900867 C 2.53967200 1.38094000 -0.95829200

C	2.33907200	1.38094000	-0.93829200
Н	2.43858600	1.26196700	-2.03718000
Н	3.60267300	1.38463300	-0.70851300
Н	2.13039500	2.35505500	-0.68686100
С	1.91954900	0.20464800	1.80235700
Н	1.51741600	1.15610800	2.15531700
Н	2.98332100	0.18476100	2.04938700
Н	1.43150500	-0.59286100	2.36485300
С	2.31751500	-1.68189300	-0.58943400
Н	1.79980700	-2.49602900	-0.08111000
Н	3.37984600	-1.75600600	-0.34726000
Н	2.19810800	-1.81957600	-1.66385800
С	-1.92272500	-0.39785900	1.77057900
Н	-1.54096500	-1.39066200	2.01617400

Н	-2.98591500	-0.38418500	2.02082900
Н	-1.41887100	0.32212500	2.41736900
С	-2.55954000	-1.26121600	-1.09826500
Н	-2.46059600	-1.02623000	-2.15816400
Н	-3.62179900	-1.28092400	-0.84610800
Η	-2.16035700	-2.26363000	-0.93688200
С	-2.29393800	1.74070400	-0.40737500
Н	-1.76718100	2.48971600	0.18473700
Н	-3.35583900	1.80188300	-0.15980100
Н	-2.17082600	1.98957600	-1.46118900
Ν	-0.00014300	0.01831200	-0.55427500
Si	1.65304300	-0.00449500	-0.04911600
Si	-1.65315000	0.00622000	-0.04797300

Sum of electronic and thermal Enthalpies = -3117.171875 Sum of electronic and thermal Free Energies = -3117.230123 C -1.63924100 0.59487100 1.48702000

0	1.05/21100	0.57107100	1.10/02000
С	-1.64001700	0.59541800	-1.48651500
С	0.18908200	1.61400000	0.00007400
С	-1.50190200	-1.54136200	0.00014900
0	-2.19636900	0.91257100	2.42903600
0	-2.19739700	0.91357600	-2.42823100
0	0.75059000	2.60621900	0.00022400
0	-1.96808700	-2.58047300	0.00050000
Fe	-0.78762500	0.11521700	-0.00005200
Ge	1.23289600	-0.88270600	-0.00076500
Cl	3.14518700	0.16813200	0.00054500

Sum of electronic and thermal Enthalpies = -3531.494677 Sum of electronic and thermal Free Energies = -3531.586660

			0
С	-2.16412800	0.46274200	1.63800100
С	-3.82098200	0.71552000	-0.29657900
С	-1.60073300	0.60133900	-1.49252900
С	-2.99525200	-1.76910000	-0.16124000
С	2.25276600	-2.87179400	-0.63879300
Н	1.61792600	-3.37952400	0.08771500
Н	3.12208300	-3.51178300	-0.81294500
Н	1.70581400	-2.80647100	-1.58123100
С	4.12678000	-0.60778900	-1.31904300
Н	3.68147600	-0.53713300	-2.31222900
Н	4.93587300	-1.33986500	-1.37078800
Н	4.57366300	0.35594600	-1.07897200
С	3.67310600	-1.41111000	1.62524800
Н	4.08901800	-0.48006700	2.00855000
Н	4.48374900	-2.14047600	1.56686300
Н	2.94833300	-1.77882900	2.35384800
С	3.30991800	2.11462500	1.08183400

Н	3.15305000	1.83123500	2.12354500
Н	3.47747800	3.19382800	1.05747900
Н	4.22461000	1.63662400	0.73370000
С	0.37225500	2.66893300	0.79969700
Н	-0.55117800	2.59483300	0.22880300
Н	0.65748500	3.72316100	0.83907100
Н	0.16495700	2.34934000	1.82154500
С	2.06214200	2.31657800	-1.72268300
Н	2.93872900	1.86345400	-2.18492800
Н	2.20644700	3.39934300	-1.72760800
Н	1.19570100	2.09464200	-2.34599000
Ν	1.50612300	-0.04124300	0.04931400
0	-2.14524300	0.86376000	2.71323000
0	-4.80657800	1.26406400	-0.46839000
0	-1.23110500	1.10400100	-2.45893100
0	-3.47684700	-2.80113400	-0.25121500
Si	2.87071100	-1.19452300	-0.05495600
Si	1.79580100	1.72682900	0.03607400
Fe	-2.27372300	-0.12726900	-0.02865600
Ge	-0.10623400	-0.86525100	0.24677300

Sum of electronic and thermal Enthalpies = -3082.688849 Sum of electronic and thermal Free Energies = -3082.756551

			0
С	-0.08574100	0.81043400	0.06596000
С	-0.37599400	2.25844200	0.45723500
С	-1.18670400	2.91920500	-0.66880700
Н	-0.61730800	2.92885800	-1.59869800
Н	-1.39811300	3.95327900	-0.39311500
Н	-2.13405800	2.42661500	-0.86593000
С	-1.14825900	2.26120300	1.78671200
Н	-2.09244400	1.72559600	1.74406700
Н	-1.36204900	3.29315000	2.06853900
Н	-0.54750100	1.81477700	2.57970400
С	0.86414300	3.12601200	0.67449300
Н	1.45228500	2.80200000	1.53152200
Н	0.52454600	4.14057200	0.88630200
Н	1.50434500	3.17573300	-0.20408500
С	-2.48965700	-0.04760200	-0.19675800
Н	-2.81067100	0.91856800	0.18815200
С	-3.02972400	-0.19622100	-1.61369500
Н	-2.64611800	0.58254500	-2.27212400

Н	-4.11871300	-0.13890100	-1.60617100
Н	-2.74680900	-1.16048100	-2.03674800
С	-3.04459100	-1.12724700	0.72185700
Н	-2.75712100	-2.12018600	0.37305900
Н	-4.13380300	-1.08147500	0.73777700
Н	-2.67393100	-1.01117600	1.73960600
С	2.48521200	0.61838800	-0.03456900
Н	2.58348700	1.45570500	0.64996900
С	2.97363300	1.04075700	-1.41454700
Н	2.90936500	0.20574600	-2.11322000
Н	4.01452200	1.36284500	-1.36479200
Н	2.37995400	1.86061500	-1.81919700
С	3.32533700	-0.52255900	0.51919500
Н	2.98292400	-0.82202700	1.50848600
Н	4.36821700	-0.21347400	0.58890400
Н	3.28692000	-1.39657000	-0.13335500
Ν	-1.03597100	-0.09356900	-0.19021500
Ν	1.09158000	0.19885600	-0.07361500
Cl	0.32962500	-2.64898200	1.20607100
Ge	0.25978900	-1.47660900	-0.64460900

Sum of electronic and thermal Enthalpies = -3496.982	2652
Sum of electronic and thermal Free Energies = -3497 .	.086141
C 2.06875100 0.06460700 -0.06019700	
C 3.49059100 0.18838400 0.50792500	
C 4.22101100 -1.13887700 0.72707700	
Н 3.72717100 -1.76328400 1.47018300	
Н 5.21421000 -0.90722400 1.11464500	
Н 4.35841600 -1.70778700 -0.18922100	
C 3.44920600 0.85998100 1.89176200	
Н 2.96846200 0.20861000 2.62065100	
Н 2.93387800 1.81574200 1.91043700	
Н 4.47458400 1.03037800 2.22296400	
C 4.34558100 1.00651000 -0.47321600	
Н 5.35188000 1.10349100 -0.06274400	
Н 3.96093900 2.00680200 -0.65187700	
Н 4.41707500 0.50670900 -1.43780700	
C 1.78546400 -2.43637100 -0.55156600	
Н 2.45769600 -2.68857400 0.26476800	
C 0.54656100 -3.30514900 -0.39577400	
Н 0.08122100 -3.16827500 0.57880800	
Н 0.81880800 -4.35586100 -0.49601200	
Н -0.19283800 -3.08457100 -1.16653000	
C 2.48135300 -2.73808600 -1.87388700	
Н 1.80239900 -2.56952400 -2.70894700	
Н 2.80117800 -3.78082700 -1.89754300	
Н 3.35546300 -2.10684600 -2.02844800	
C 1.46006600 2.53908000 -0.09663900	
Н 2.43274100 2.70563900 0.36103300	
C 0.39793500 3.09694500 0.84069200	
Н -0.59998700 2.90915200 0.44240300	
Н 0.51924300 4.17461800 0.95402500	
Н 0.45901400 2.63986900 1.82839900	
C 1.45199500 3.27885500 -1.42766100	

Н	2.20309200	2.88285700	-2.10940700
Н	1.65998900	4.33649700	-1.26048200
Н	0.48131200	3.20536700	-1.91622200
С	0.15766700	-0.60482100	2.42573400
Н	0.74856000	-1.45750700	2.10012700
Η	-0.01901900	-0.71206900	3.49917500
Н	0.73718200	0.30229600	2.27751600
С	-2.38815500	0.86663700	2.62007800
Н	-1.78715100	1.77700600	2.58900300
Н	-2.46287500	0.55964900	3.66617800
Н	-3.38945400	1.12087000	2.28030700
С	-2.35195100	-2.16794200	2.04451000
Н	-3.43429100	-2.11028500	2.13602800
Н	-1.95900900	-2.52919600	2.99757200
Н	-2.12414500	-2.91852100	1.28681000
С	-4.59350000	-0.56018300	0.28752000
Н	-4.58138200	-1.64652300	0.19769700
Н	-5.52703700	-0.21075600	-0.16159400
Н	-4.62854800	-0.30285300	1.34298600
С	-3.59251900	-0.43273200	-2.44957100
Н	-3.02374600	0.02822100	-3.25069000
Н	-4.65355300	-0.24387100	-2.63216400
Н	-3.43798100	-1.51067600	-2.50264000
С	-3.47860900	2.08938600	-0.69980100
Н	-3.35309600	2.48815900	0.30776700
Н	-4.49205700	2.33070900	-1.02804400
Н	-2.79202300	2.61674000	-1.36179000
Ν	1.40436600	-1.03406400	-0.42880600
Ν	1.26373800	1.10823200	-0.27517000
Ν	-1.59007100	-0.16880700	-0.10342500
Si	-1.54673800	-0.50943300	1.64114700
Si	-3.21796700	0.22787500	-0.73732600
Ge	-0.09548000	-0.00023200	-1.20284200

FeCO4

Sum of electronic and thermal Enthalpies = -578.724904Sum of electronic and thermal Free Energies = -578.772365-0.73151300 1.65014700 0.43109400 1.79514100 -0.19117500 0.43500600 -1.06496500 -1.45608500 0.43438800 С C C C 0.00183900 -0.00291400 -1.35054600 -1.19519000 2.69279500 0.42232400 0 0 2.92976700 -0.31255700 0.42799800 0 -1.73942000 -2.37656400 0.42736800 0 0.00273300 -0.00482800 -2.49176700 Fe $0.00053300 \quad 0.00036200 \quad 0.38511400$