Electronic Supplementary Information

Generation of Stannabenzenes and Their Monomer-Dimer Equilibration

Yoshiyuki Mizuhata,*^{a,b} Shiori Fujimori,^a Naoya Noda,^a Shuhei Kanesato,^a and Norihiro Tokitoh *^{a,b}

^aInstitute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan ^bIntegrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto 611-0011, Japan

> tokitoh@boc.kuicr.kyoto-u.ac.jp (NT) mizu@boc.kuicr.kyoto-u.ac.jp (YM)

> > Tel: +81-774-38-3200 Fax: +81-774-38-3209

Table of Contents

1.	NMR Spectra of All New Compounds	S3
2.	Equilibrium between Stannabenzene Monomer and Dimer	S13
3.	X-Ray Diffraction Studies	S17
4.	Coordinates (xyz) for the calculated structures	.S18
5.	Author Contributions	S20

1. NMR Spectra of All New Compounds

Figure S1. ¹H NMR spectrum (300 MHz, 298 K, C₆D₆) of 8a.

Figure S2. ¹H NMR spectrum (300 MHz, 298 K, C₆D₆) of 8b.

Figure S4. ¹H NMR spectrum (300 MHz, 298 K, C_6D_6) of 5b.

Figure S5. ¹H NMR spectrum of the mixture of 3a and 4a at various temperature (300 MHz, benzene-d₆).

Figure S6. ¹H NMR spectrum of the mixture of 3b and 4b at various temperature (300 MHz, benzene-d₆).

Figure S8. ¹³C NMR spectrum (201 MHz, 343 K, C₆D₆) of 3b.

Figure S9. ^{13}C NMR spectrum (201 MHz, 343 K, $C_6D_6)$ of 3b.

Figure S10. (a)-(h) Differential NOE measurement of 4a (600 MHz, 298 K, C₆D₆). (i) ¹H NMR spectrum of 4a (600 MHz, 298 K, C₆D₆).

Figure S11. ¹H–¹H COSY NMR spectrum (600 MHz, 343 K, C₆D₆) of 4a.

Figure S12. ¹H–¹H COSY NMR spectrum (600 MHz, 343 K, C₆D₆) of 4a.

Figure S13. $^{1}H-^{13}C$ HSQC NMR spectrum (600 MHz, 343 K, C₆D₆) of 4a.

Figure S14. $^{1}H-^{13}C$ HSQC NMR spectrum (600 MHz, 343 K, C₆D₆) of 4a.

2. Equilibrium between Stannabenzene Monomer and Dimer

Temp/°C	[3a]/M ⁻¹	[4a]/M ⁻¹	K_{eq}/M^{-1}	
50	0.000708	0.00249	4960	
55	0.000909	0.00239	2890	
60	0.00112	0.00228	1810	
65	0.00141	0.00213	1070	
70	0.00171	0.00199	679	

Table S1. Equilibrium constants K_{eq} between **3a** and **4a** in benzene- d_6 at various temperatures^a

^a Equilibrium constants ($K_{eq} = [4a]/[3a]^2$) were calculated by integral ratio of ¹H NMR signals.

Figure S15. A plot of $ln(K_{eq})$ vs 1/T.

Temp/°C	[3a]/M ⁻¹	[4a]/M ^{−1}	K_{eq}/M^{-1}
40	0.000530	0.00699	24900
45	0.000723	0.00690	13200
50	0.000944	0.00679	7620
55	0.00120	0.00666	4590
60	0.00150	0.00651	2910

Table S2. Equilibrium constants K_{eq} between 3a and 4a in THF-d₈ at various temperatures^a

^a Equilibrium constants ($K_{eq} = [4a]/[3a]^2$) were calculated by integral ratio of ¹H NMR signals.

Figure S16. A plot of $ln(K_{eq})$ vs 1/T.

Temp/°C	[3b]/M ⁻¹	[4b]/M ⁻¹	K_{eq}/M^{-1}
30	0.0147	0.0541	250
40	0.0239	0.0494	86.3
50	0.0383	0.0423	28.9
60	0.0539	0.0345	11.9
70	0.0743	0.0243	4.39
80	0.0891	0.0168	2.12

Table S3. Equilibrium constants K_{eq} between 3b and 4b in benzene- d_6 at various temperatures^a

^a Equilibrium constants ($K_{eq} = [4b]/[3b]^2$) were calculated by integral ratio of ¹H NMR signals.

Figure S17. A plot of $ln(K_{eq})$ vs 1/T.

Temp/°C	[3a]/M ⁻¹	[4a]/M⁻¹	K_{eq}/M^{-1}
30	0.0168	0.0530	188
40	0.0288	0.0470	56.6
50	0.0429	0.0400	21.7
60	0.0531	0.0348	12.3
70	0.0632	0.0298	7.46
80	0.0741	0.0244	4.45

 Table S4. Equilibrium constants K_{eq} between 3b and 4b in THF-d₈ at various temperatures^a

^a Equilibrium constants ($K_{eq} = [4b]/[3b]^2$) were calculated by integral ratio of ¹H NMR signals.

Figure S18. A plot of $ln(K_{eq})$ vs 1/T.

3. X-Ray Diffraction Studies

Figure S19. Crystal structure of [4a-benzene]. Independent part 0 (bold and black lines, occupancy is 1), part -1 (red lines, occupancy is essentially 0.5), and symmetrically expanded part (thin and black lines, except for a benzene molecule).

Figure S20. Crystal structure of 6b (ORTEP drawing; thermal ellipsoids set 50% probability). Hydrogen atoms and disordered part were omitted for clarity.

4. Coordinates (xyz) for the calculated structures

[Sn] head-to-head

С	-1.11632700	1.00845400	1.72752500
С	-0.17083300	2.12596500	-0.37463200
С	-0.45002100	2.00350300	1.12190200
С	-2.21701100	0.82368900	-1.19038100
С	-1.36309100	1.85546200	-1.28675400
С	2.42066300	-1.33472000	0.70830200
С	2.33618500	1.73890200	-0.13765800
С	3.24864700	-0.32956900	1.06255000
С	3.21806200	1.07932400	0.64165600
Н	2.59887700	-2.32068300	1.13255800
Н	4.07073900	-0.55762600	1.74613100
Н	4.04866800	1.66970200	1.02709100
Н	2.54475600	2.80181400	-0.29725500
Н	-1.47432900	2.57420500	-2.10285200
н	-3.00814900	0.71240700	-1.92858800
Н	0.12945000	3.16866800	-0.55023800
Н	-1.21773500	1.01210100	2.81029700
Н	-0.02337900	2.80944300	1.72305100
Sn	-1.78190800	-0.51556900	0.40684500
Н	-2.98296900	-1.61753900	0.92408500
С	1.08551800	1.25042500	-0.81992000
Н	1.20111200	1.44236900	-1.89594900
Sn	0.80633300	-0.91017200	-0.59098100
Н	0.94099000	-1.73644600	-2.09710000

[Sb] head-to-head

С	-0.92649800	1.14634700	1.60771100
С	0.08548800	2.13794400	-0.48691800
С	-0.19452500	2.08515500	0.99824700
С	-2.01634200	0.92761200	-1.20825000
С	-1.11706700	1.90572000	-1.37410900
С	1.91774100	-1.25371100	1.07513600
С	2.54195400	1.52458900	-0.19149100
С	2.82916500	-0.34992400	1.48291600
С	3.17626600	0.91255700	0.82725400
Н	1.78351300	-2.16385300	1.65696100
Н	3.40563700	-0.56642900	2.38488600
Н	4.05979100	1.40913800	1.22595200
Н	2.95922500	2.47742000	-0.52756300
Н	-1.20114200	2.57621400	-2.23250900
Н	-2.82778400	0.80042600	-1.92129900
Н	0.48302900	3.13556900	-0.71584900
Н	-1.03319600	1.14880700	2.68993600
Н	0.29525500	2.85747100	1.59322800
С	1.26920400	1.13033300	-0.89009400
Н	1.40848200	1.28115600	-1.96687800
Sb	-1.86277700	-0.41649500	0.47177300
Sb	0.78973500	-1.03361500	-0.73117100

[Sn] head-to-tail

С	1.19893800	0.19278200	1.89673800
С	0.28824400	-1.90176100	0.78049900
С	0.56579900	-0.99621900	1.94983600
С	2.21480500	-1.21009000	-0.73059300
С	1.39345900	-2.14844700	-0.21239200
С	-0.25069300	0.93777700	-1.04491000
С	-0.93684500	2.19362700	-0.64787500
С	-2.82125300	0.02335700	0.70738700
С	-1.98924600	2.37227100	0.18991100
С	-2.84687700	1.37311900	0.82727100
Н	-0.00292100	0.94806400	-2.11223800
Н	-0.52024800	3.10638600	-1.08236200
Н	-2.28737500	3.40246700	0.37691400
Н	-3.63992800	1.81127300	1.43945000
Н	-3.59394800	-0.55029200	1.21489400
Н	1.48123800	-3.18793100	-0.53906900
Н	2.98209800	-1.50366900	-1.44204300
Н	-0.12653500	-2.85118200	1.12557900
Н	1.34246000	0.76785300	2.80698200
Н	0.16396400	-1.35552200	2.90051400
Sn	1.73191000	0.73392300	-0.06752700
Н	2.79852000	2.04587900	-0.34872000
Sn	-1.28606800	-0.84818700	-0.43181300
Н	-1.78742900	-1.93863600	-1.66813100

[Sb] head-to-tail

С	1.16314200	0.26363500	1.79651900
С	-0.05382400	-1.79742400	1.03672300
С	0.31733100	-0.76091100	2.01853100
С	1.92022100	-1.57159500	-0.49930100
С	0.97183900	-2.31595400	0.10399000
С	-0.16894200	0.79916100	-1.06044100
С	-0.56552200	2.18992200	-0.75991400
С	-2.61085700	0.49815600	0.84874600
С	-1.48316300	2.63344700	0.13302400
С	-2.40310700	1.83145400	0.92658800
Н	0.08282600	0.68215600	-2.11814500
Н	0.00204000	2.95682000	-1.29192700
Н	-1.57707700	3.71069300	0.25498300
Н	-3.01860700	2.40399600	1.62454100
Н	-3.38179500	0.05351400	1.47583800
Н	0.88887000	-3.37952300	-0.13238600
Н	2.62210700	-2.03659000	-1.18726600
Н	-0.64862100	-2.59644900	1.48011200
Н	1.36310800	0.98651700	2.58256700
Н	-0.19487700	-0.83454700	2.98020900
Sb	-1.56080000	-0.77421100	-0.49960400
Sb	1.97921800	0.52782000	-0.14618700

2-t-Bu-stannabenzene [HSnC5(t-Bu)H4]

С	-1.07338700	2.33715700	0.00003700
С	0.21450400	1.77353800	0.00000900
С	0.62199400	0.43279700	-0.00005200
С	-2.55961900	0.31310200	-0.00013000
С	-2.31860700	1.68576600	-0.00002000
Н	-1.10649000	3.42420800	0.00006900
Н	1.01804900	2.51393600	0.00000100
Н	-3.58872600	-0.03348500	-0.00014500
Н	-3.18994600	2.34395100	0.00001000
Sn	-0.93555900	-0.88315900	0.00001700
Н	-0.93220900	-2.58087900	-0.00005200
С	2.11753600	0.08321800	-0.00000900
С	2.79593700	0.66790000	-1.26289500
Н	3.86643800	0.42709700	-1.26980400
Н	2.34636800	0.25583800	-2.17340900
Н	2.69857800	1.75757900	-1.30721900
С	2.33404600	-1.44103200	-0.00085500
Н	3.40337200	-1.68232400	-0.00051800
Н	1.89246200	-1.90897700	0.88840400
Н	1.89323900	-1.90790400	-0.89106000
С	2.79547500	0.66650400	1.26379100
Н	3.86592900	0.42551700	1.27088300
Н	2.69819100	1.75614900	1.30906200
Н	2.34543300	0.25356600	2.17366100

5 Author Contributions

Y.M. conceived and designed the work, carried out the X-ray diffraction analyses, performed the DFT calculations, and analyzed the computational data. S.F., N.N., and S.K. performed the experiments and analyzed the experimental data. Y.M., S.F., and N.T. co-wrote the paper.