Supporting Information

Rational Design of MnCo$_2$O$_4$@NC@MnO$_2$ Three-Layered Core-Shell Octahedron for High-Rate and Long-Life Lithium Storage

Peng Huang, Ming Zhao, Bo Jin*, Huan Li, Zhi Zhu, Lixue Jiang, Qing Jiang

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130022, China

E-mail: jinbo@jlu.edu.cn (B. Jin)
Figure S1. CV curves of (a) MnCo$_2$O$_4$ and (b) MnCo$_2$O$_4$@NC from 0.01 to 3 V at a scan rate of 0.1 mV s$^{-1}$.
Figure S2. Galvanostatic discharge-charge curves of (a) MnCo$_2$O$_4$ and (b) MnCo$_2$O$_4$@NC at 500 mA g$^{-1}$.
Figure S3. EIS spectra of (a) MnCo$_2$O$_4$ and (b) MnCo$_2$O$_4$@NC after different cycles recorded in the frequency range of 0.01-106 Hz.
Figure S4. SEM images of MnCo$_2$O$_4$@NC@MnO$_2$ electrode (a) before cycling and (b) after 500 cycles at a current density of 1000 mA g$^{-1}$.
Figure S5. SEM images of MnCo$_2$O$_4$@NC electrode (a) before cycling and (b) after 100 cycles at a current density of 500 mA g$^{-1}$.
Figure S6. SEM images of MnCo$_2$O$_4$ electrode (a) before cycling and (b) after 100 cycles at a current density of 500 mA g$^{-1}$.