Supporting Information

Reactivity of diphosphinodithio ligated nickel(0) complex toward alkyl halides and resultant nickel(I) and

nickel(II)-alkyl complexes

Ailing Zhang, Congxiao Wang, Xiaoyu Lai, Xiaofang Zhai, MaoFu Pang, Chen-Ho Tung and

Wenguang Wang*

Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and

Chemical Engineering, Shandong University, Jinan, 250100, China

Table of Contents	
Fig. S1 ¹ H NMR spectrum of $[1]^0$	P S3
Fig. S2 ${}^{31}P{}^{1}H$ NMR spectrum of $[1]^0$	P S4
Fig. S3 ESI-MS spectrum of $[1]^0$. P S5
Fig. S4 ESI-MS spectrum of [1]BPh ₄	P S6
Fig. S5 ¹ H NMR spectrum of 1,2-diphenylethane	P S7
Fig. S6 GC-MS for the reaction mixture of $[1]^0$ with BnBr	P S8
Fig. S7 ${}^{31}P{}^{1}H$ NMR spectra recorded for the reaction of $[1]^+$ with BnBr	P S9
Fig. S8 ¹ H NMR spectrum of [1–allyl]BPh ₄	P S10
Fig. S9 ³¹ P{ 1 H} NMR spectrum of [1–allyl]BPh ₄	P S11
Fig. S10 VT ${}^{31}P{}^{1}H$ NMR of [1–allyl]BPh ₄	P S12
Fig. S11 $^{13}C{^{1}H}$ NMR of [1–allyl]BPh ₄	P S13
Fig. S12 ESI-MS spectrum of [1-allyl]BPh ₄	P S14
Fig. S13 ¹ H NMR spectrum of [1–Et]BPh ₄	P S15
Fig. S14 ${}^{31}P{}^{1}H$ NMR spectrum of [1–Et]BPh ₄	P S16
Fig. S15 ESI-MS spectrum of [1–Et]BPh ₄	P S17
Fig. S16 ¹ H NMR spectra of $[1$ -Et] ⁺ in CD ₂ Cl ₂ after 12 h	P S18
Fig. S17 ³¹ P { ¹ H} NMR spectra of $[1-Et]^+$ in CD ₂ Cl ₂ after 12 h.	P S19
Fig. S18 ¹ H NMR spectrum of $[1-Et]^+$ and ² H NMR spectrum of $[1-C_2D_5]^+$	P S20
Fig. S19 ² H NMR spectra of CD_3CD_2I and $[1-C_2D_5]^+$	P S21
Fig. S20 ${}^{31}P{}^{1}H$ NMR spectrum of [1-C ₂ D ₅]BPh ₄	P S22
Fig. S21 ESI-MS spectrum of [1–C ₂ D ₅]BPh ₄	P S23
Fig. S22 ¹ H NMR spectrum of $[1^{-i}Pr]BPh_4$	P S24
Fig. S23 ¹ H NMR spectrum of $[1^{-i}Pr]^+$ in δ 4.2-(-0.1) region	P S25
Fig. S24 ³¹ P{ ¹ H}NMR spectrum of $[1^{-i}Pr]BPh_4$	P S26
Fig. S25 ${}^{13}C{}^{1}H$ NMR of $[1-{}^{i}Pr]BPh_4$	P S27
Fig. S26 ESI-MS spectrum of [1- ^{<i>i</i>} Pr]BPh ₄	P S28
Fig. S27 ¹ H NMR spectra of $[1 - {}^{i}Pr]^{+}$ in CD ₂ Cl ₂ after 12 h	P S29

Fig. S28 ¹³ C NMR spectra of $[1-CH_3]^+$, $[1-Et]^+$ and $[1-iPr]^+$ P	S30
Fig. S29 VT 31 P NMR spectra of [1–CH ₃]BPh ₄ P	S 31
Fig. S30 VT ³¹ P NMR spectra of $[1^{-i}Pr]BPh_4$ P	S32
Fig. S31 ${}^{31}P{}^{1}H$ NMR spectra for [1] ⁰ with CH ₃ CH ₂ I and PhMgBr P	S33
Fig. S32 GC-FID of ethylbenzene standard P	S34
Fig. S33 GC-FID of the reaction mixture of $[1-Et]^+$ with PhMgBr P	S34
Fig. S34 ${}^{31}P{}^{1}H$ NMR spectra for [1] ⁰ with TMEDA P	S35
Fig. S35 ${}^{31}P{}^{1}H$ NMR spectra for the reaction of $[1]^+$ with PhMgBr P	S36
Fig. S36 ¹ H NMR spectra for the reaction of CH ₃ CH ₂ I with PhMgBrP	S37
Table S1 Coupling reactions of alkyl halides with Grignard reagents catalyzed by [1] ⁰ P	S38
Table S2-S4 Crystal data and structure refinement parameters P S39-	-S41

1.81 3.66 3.62 3.51 3.51 -2.53 7.63 7.49 7.31 7.31 7.16 7.16 6.79 [**1**]⁰ b&b'b&b' a&a' a&a' 2.14 2.12 2.08 4.09 4.33 4.0 ppm 3.0 8.0 7.0 6.0 1.0 5.0 2.0 9.0 0.0

Fig. S1 ¹H NMR spectrum of $[1]^0$ in THF- d_8 .

Fig. S2 ³¹P NMR spectrum of $[1]^0$ in THF (H₃PO₄ as internal standard).

Fig. S3 ESI-MS spectrum of $[1]^0$ in toluene.

Calcd for [**1**]⁰, 700.1087; found, 700.1071.

Fig. S4 ESI-MS spectrum of [1]BPh₄ in CH₂Cl₂.

Calcd for [1]BPh₄, 700.1087; found, 700.1068.

Fig. S5 ¹H NMR spectrum of 1,2-diphenylethane in CDCl₃.

Fig. S6 GC-MS for the reaction mixture of $[1]^0$ with BnBr.

Results: Calcd for bibenzyl, 182.1096; found, 182.

Chemical Formula: C₁₄H₁₄ Exact Mass: 182.1096 Molecular Weight: 182.2660 m/z: 182.1096 (100.0%), 183.1129 (15.1%), 184.1163 (1.1%)

Fig. S7 ³¹P NMR spectra for (a) $[1]^+$ in CH₂Cl₂ (H₃PO₄ as internal standard). (b) the reaction of $[1]^+$ with benzyl bromide, followed by treatment with NaBPh₄, the phosphorus spectrum is consistent with $[1]^{2+}$.

Fig. S8 ¹H NMR spectrum (500 MHz, CD_2Cl_2 , 213K) of [1–allyl]BPh₄(\circ = diethyl ether).

Fig. S9 ³¹P NMR spectrum of [1–allyl]BPh₄ in CD₂Cl₂.

Fig. S10 VT 31 P NMR spectra (202 MHz, CD₂Cl₂) of [1–allyl]BPh₄.

Fig. S11 ¹³C NMR spectrum (126 MHz, CD₂Cl₂) of [1–allyl]BPh₄.

Fig. S12 ESI-MS spectrum of [1–allyl]BPh₄ in CH₂Cl₂.

Calcd for [1–allyl]BPh₄, 741.1478; found, 741.1458.

Fig. S13 ¹H NMR spectrum of [1–Et]BPh₄ in CD₂Cl₂.

Fig. S14 31 P NMR spectrum of [1–Et]BPh₄ in CD₂Cl₂.

Fig. S15 ESI-MS spectrum of $[1-Et]BPh_4$ in CH_2Cl_2 .

Calcd for [1–Et]BPh₄, 729.1478; found, 729.1457.

c) control of [1-H]+

Fig. S16 ¹H NMR spectra of (a) $[1-Et]^+$. (b) $[1-Et]^+$ in CD₂Cl₂ after 12 h. (c) control of $[1-H]^+$.

Fig. S17 ³¹P NMR spectra of (a) $[1-Et]^+$. (b) $[1-Et]^+$ in CD₂Cl₂ after 12 h. (c) control of $[1-H]^+$.

Fig. S18 ¹H NMR (CD₂Cl₂) spectrum of $[1-Et]^+$ and ²H NMR (CH₂Cl₂) spectrum of $[1-C_2D_5]^+$, respectively. Assignments: (The peaks marked with \diamond is assigned to residual solvent protons of hexane.)

Fig. S19 a) 2 H NMR (CH₂Cl₂) spectrum of CD₃CD₂I. b) 2 H NMR (CH₂Cl₂) spectrum of [1-C₂D₅]BPh₄.

Results: a) δ 1.76 (br, CD₃CD₂I), 3.16 (br, CD₃CD₂I).

b) δ 0.99 (br, Ni–CD₂CD₃), 1.95 (br, Ni–CD₂CD₃).

Fig. S20 ³¹P NMR spectrum of $[1-C_2D_5]BPh_4$ in CH_2Cl_2 .

Fig. S21 ESI-MS spectrum of [1–C₂D₅]BPh₄ in CH₂Cl₂.

Calcd for $[1-C_2D_5]BPh_4$, 734.1792; found, 734.1768.

Fig. S22 ¹H NMR spectrum of $[1^{-i}Pr]BPh_4$ in CD₂Cl₂.

Fig. S23 ¹H NMR spectrum (500 MHz, CD_2Cl_2) of $[\mathbf{1}^{-i}Pr]^+$: expansion of the δ 4.2-(-0.1) region.

Fig. S24 ³¹P NMR spectrum of $[1^{-i}Pr]BPh_4$ in CD₂Cl₂ at 213 K.

Fig. S25 ¹³C NMR spectrum (126 MHz, CD_2Cl_2) of $[1^{-i}Pr]BPh_4$. Assignments: (The peaks marked with \diamond and \circ are assigned to residual solvent protons

of hexane and diethyl ether.)

Fig. S26 ESI-MS spectrum of $[1^{-i}Pr]BPh_4$ in CH_2Cl_2 .

Calcd for [1-^{*i*}Pr]BPh₄, 743.1635; found, 743.1600.

c) control of [1-H]+

Fig. S27 ¹H NMR spectra in CD_2Cl_2 for (a) $[1 - {}^{i}Pr]^+$. (b) $[1 - {}^{i}Pr]^+$ in CD_2Cl_2 after 12 h. (c) control of $[1-H]^+$.

Fig. S28 ¹³C NMR spectra of $[1-CH_3]^+$, $[1-Et]^+$ and $[1-iPr]^+$ (126 MHz, CD_2Cl_2): expansion of the δ 29.5 -1 region.

¹³C NMR (126 MHz, CD₂Cl₂): δ 4.23 (t, $J_{P-C} = 17.1$ Hz, Ni-CH₃)

δ 26.49 (t, J_{P-C} = 11.7 Hz, Ni-*C*H₂CH₃) δ 27.75 (t, J_{P-C} = 13.2 Hz, Ni-*C*H(CH₃)₂)

Fig. S29 VT ³¹P NMR spectra (202 MHz, CD₂Cl₂) of [1–CH₃]BPh₄.

Fig. S30 VT ³¹P NMR spectra (202 MHz, CD_2Cl_2) of $[1-^iPr]BPh_4$.

Fig. S31 ³¹P NMR spectra for (a) $[1]^0$ in THF. (b) the reaction of $[1]^0$ with iodoethane, and then was treated with NaBPh₄, producing $[1-Et]^+$ in THF. (c) the reaction of $[1-Et]^+$ with PhMgBr, producing $[1]^0$ in THF.

Fig. S32 GC-FID of ethylbenzene standard in THF.

Fig. S33 GC-FID of the reaction mixture of $[1-Et]^+$ with PhMgBr in THF.

Fig. S34 ${}^{31}P{}^{1}H$ NMR spectra recorded for the reaction of $[1]^{0}$ with tetramethylethylenediamine (TMEDA).

No reaction occurred as monitored by ³¹P NMR spectroscopy.

Fig. S35 ${}^{31}P{}^{1}H$ NMR spectra recorded for the reaction of [1]⁺ with PhMgBr.

Fig. S36 ¹H NMR spectra for (a) the reaction of CH₃CH₂I and PhMgBr with the catalysis of $[1]^0$ in THF- d_8 for 15 min, (b) the control experiment for the reaction of CH₃CH₂I and PhMgBr in the absence of catalyst. 1,3,5-Trimethoxybenzene was added to this solution as an internal standard, & = 1,3,5-trimethoxybenzene.

$RX + RMgBr \longrightarrow R-R' + R-R$				
Entry	Alkyl halide	Grignard Reagent	Product Yield(%) ^{a,b}	
Lindy		Chighard Reagon	R-R'	R-R
1		MgBr	74	12
2		MgBr	67	15
3	Br	MgBr	42	25
4		MgBr	51 ^c	trace
5		MgBr	77	11
6		MgBr	55	d
7		MgBr	62	d

Table S1 Coupling reactions of alkyl halides with Grignard reagents catalyzed by $[1]^0$.

^aAll reactions were carried out by adding the aryl Grignard reagent (0.5 mmol) dropwise to a mixture of the alkyl halide (0.5 mmol), Ni⁰(P₂S₂) (2 mol %), TMEDA (30 mol %) in 1 mL THF at 0°C for 2 h, the conversion of alkyl halide was 100%. ^bYield was determined by ¹H-NMR spectroscopy (1,3,5-trimethoxybenzene as the internal standard). ^cReaction conducted at 25°C and the conversion of alkyl halide was 56%.^dYield was unable to be determined by ¹H NMR spectroscopy due to the significant overlap between the byproduct peaks and the solvent peaks.

RX + R'MgBr $\xrightarrow{\text{cat. [Ni]}^0}$ R-R' + R-R

Single-crystal X-ray diffraction data of $[1]^0$, $[1]^+$, $[1-allyl]^+$ were collected on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer equipped with a HyPix-6000HE area detector at 100 K using Mo K α ($\lambda = 0.71073$ Å) from PhotonJet micro-focus X-ray Source. The structure was solved using the charge-flipping algorithm, as implemented in the program *SUPERFLIP¹* and refined by full-matrix least-squares techniques against Fo^1 using the SHELXL program² through the OLEX2 interface.³

Empirical formula	C ₄₄ H ₄₄ NiOP ₂ S ₂
Formula weight	773.56
Crystal system	triclinic
Space group	<i>P</i> -1
Unit cell dimensions	a = 9.5713(3) Å
	b = 13.7242(5) Å
	c = 14.7211(3) Å
	$\alpha = 85.898(2)^{\circ}$
	$\beta = 86.077(2)^{\circ}$
	$\gamma = 80.810(3)^{\circ}$
Volume	1900.83(9) Å ³
Z	2
Density (calculated)	1.352 g/cm^3
Absorption coefficient	2.814 mm^{-1}
F(000)	812.0
Theta range for data collection	8.62 to 134.144
Index ranges	$-11 \le h \le 11,$
	$-16 \le k \le 16,$
	$-10 \le l \le 17$
Reflections collected	17621
Independent reflections	6728 [$R_{int} = 0.0358$, $R_{sigma} = 0.0410$]
Absorption correction	multi-scan
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6728/0/469
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	$R_1 = 0.0344, wR_2 = 0.0841$
R indices (all data)	$R_1 = 0.0459, wR_2 = 0.0908$
Largest diff. peak and hole	$0.62 \text{ and } -0.42 \text{ e.} \text{\AA}^{-3}$

Table S2 Crystal data and structure refinement parameters for [1]⁰.

Empirical formula	C ₆₄ H ₅₆ BNiP ₂ S ₂
Formula weight	1020.66
Crystal system	orthorhombic
Space group	Pbca
Unit cell dimensions	a = 18.6906(3) Å
	b = 21.6675(3) Å
	c = 27.8121(4) Å
	α =90 °
	β =90 °
	$\gamma = 90^{\circ}$
Volume	11263.4(3) $Å^3$
Z	8
Density (calculated)	1.204 g/cm^3
Absorption coefficient	2.009 mm^{-1}
F(000)	4280.0
Theta range for data collection	7.008 to 134.16 °
Index ranges	$-22 \le h \le 22$,
	$-14 \le k \le 25,$
	$-32 \le l \le 33$
Reflections collected	34031
Independent reflections	9960 [$R_{int} = 0.0433$, $R_{sigma} = 0.0428$]
Absorption correction	multi-scan
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9960/0/631
Goodness-of-fit on F ²	1.027
Final R indices [I>2sigma(I)]	$R_1 = 0.0391, wR_2 = 0.0987$
R indices (all data)	$R_1 = 0.0513, wR_2 = 0.1088$
Largest diff. peak and hole	0.31 and -0.30 e.Å ⁻³

 Table S3 Crystal data and structure refinement parameters for [1]BPh₄.

Empirical formula	CaHaBNiPaSa
Empirical formula	1061 73
Crustel system	triolinio
Space group	
Unit cell dimensions	a = 11.4951(1) A
	b = 13.9481(1) A
	c = 17.4387(1) Å
	$\alpha = 91.9485(8)^{\circ}$
	$\beta = 103.1258(10)^{\circ}$
	$\gamma = 97.6660(9)^{\circ}$
Volume	2692.67(5) Å ³
Z	2
Density (calculated)	1.310 g/cm^3
Absorption coefficient	2.122 mm^{-1}
F(000)	1116.0
Theta range for data collection	7.982 to 154.278 °
Index ranges	$-14 \le h \le 12$,
	$-17 \le k \le 17$,
	$-19 \le 1 \le 21$
Reflections collected	28724
Independent reflections	10630 $[R_{int} = 0.0495, R_{sigma} =$
-	0.0502]
Absorption correction	multi-scan
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	10630/0/667
Goodness-of-fit on F ²	1.066
Final R indices [I>2sigma(I)]	$R_1 = 0.0494, wR_2 = 0.1320$
R indices (all data)	$R_1 = 0.0604, wR_2 = 0.1462$
Largest diff. peak and hole	$0.65 \text{ and } -0.60 \text{ e.}\text{\AA}^{-3}$

Table S4 Crystal data and structure refinement parameters for [1–allyl]BPh₄.

RERFERENCES

1 L. Palatinus and G. Chapuis, Superflip- a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. *J Appl Crystallogr*, 2007, **40**, 786–790.

2 G. M. Sheldrick, Crystal structure refinement with Shelxl. Acta Cryst. C, 2015, 71, 3-8.

3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, Olex2: a complete structure solution, refinement and analysis program. *J Appl Crystallogr*, 2009, **42**, 339–341.