Constructing A Multi-interface Mo$_2$C/Co@C Nanorods Toward the Microwave Response Based on Double Attenuation Mechanisms

SisiDaia, b, Bin Quanb, Baoshan Zhanga, *, XiaohuiLiangb, Guangbin Jib, *

a School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China.
b College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.

*Corresponding Author:
Prof. Dr. Baoshan Zhang
E-mail: bszhang@nju.edu.cn
Prof. Dr. Guangbin Ji
E-mail: gbji@nuaa.edu.cn

Address: 22# HankouRoad, Nanjing 210093, P.R China

The number of Pages and Figures are 6 and 10, respectively.
Figure S1. The SEM images of MoO$_3$ nanorods (a-c) and MZ-670 (d-f).

Figure S2. The XRD pattern of MCRs-800.
Figure S3. The SEM images of MCRs-800 (a-c), MCRs-850 (d-f) and MCRs-900 (g-i), respectively.

Figure S4. Real parts (a) and imaginary parts (b) of complex permittivity of MCRs-850 and MCRs-900 with 35 wt% paraffin nanocomposites.
Figure S5. Electromagnetic parameters of MCRs-800.

Figure S6. The values of dielectric loss ability of MCRs-850 and MCRs-900.
Figure S7. The SEM images of MZRs-850 (a-b) and MZCRs-850 (c-d) (inset displaying the XRD images of the sample).
Figure S8. (a-e) SEM mapping images and (f-h) TEM images of MZCRs-850.

Figure S9. The electromagnetic parameters of MZR-850 (a), MCRs-850 (b) and MZCRs-850 (c).
Figure S10. The calculated RL values of MZR-850, MCR-850 and MZCR-850 with 35% paraffin nanocomposites (a) as well as effective bandwidth (<-10 dB).

Figure S11. The curves of attenuation constant about MCR-850 and MCR-900.