Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Improvement in Aluminum Complexes Bearing Schiff Base in Ring-Opening Polymerization of ε-Caprolactone: The Synergy of N,S-Schiff Base in a Five-Membered Ring Aluminum System

Ting-Wei Huang,^{*a*} Rou-Rong Su,^{*a*} Yi-Chen Lin,^{*a*} Hsin-Yu Lai,^{*a*} Chien-Yi Yang,^{*a*} Gopal Chandru Senadi,^{*b*} Yi-Chun Lai,^{*a*} Michael Y. Chiang,^{*ac*} Hsuan-Ying Chen*^{*acd*}

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China

^b Department of Chemistry, SRM Research Institute, SRM University, Kattankulathur 603 203, Chennai, Tamilnadu, India

^c Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Republic of China

^d Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Republic of China

Electronic supplementary information available: Polymer characterization data, and details of the

kinetic study.

Table of Contents

Table S1.	The kinetic study of polymerizations of ϵ -caprolactone using various Al complexes as
	catalysts
Table S2.	The kinetic study of polymerizations of ϵ -caprolactone using various concentration of
	L ^{CIBr} AlMe ₂ as a catalyst
Tables S3-S7	The X-ray crystallography data of L ^{CIH} AlMe ₂ (4)16-22
Figure S1	First-order kinetic plots of CL polymerizations with various [L ^{CIBr} -AlMe ₂ + 2 BnOH] plotted against time
Figure S2-S1	5. ¹ H NMR and ¹³ C spectra of all Al complexes
Figure S17.	MALDI-TOF spectrum of PCL (matrix: DCTB; ionization salt: NaI; solvent: CH ₂ Cl ₂ ,
	entry 9, Table 3)12
Figure S18-S2	22. ¹ H NMR and ¹³ C spectra of all crude ligands

Details of the Kinetic Study of *ɛ*-Caprolactone Polymerization

A typical kinetic study was conducted to establish the reaction order with respect to monomer and various Al complexes. For CL polymerization, ε -caprolactone (1.14g, 0.01 mol) was added to a solution of the mixture of Al complexes (0.1 mmol) and BnOH (0.02 mmol) in toluene (5 mL), respectively. The solution was then stirred at room temperature under nitrogen. At the indicated time intervals, 0.05 mL aliquots were removed, trapped with CDCl₃ (1mL), and analyzed by ¹H NMR. The ε -caprolactone concentration [CL] was determined by integrating the triplet methylene peak of CL at 4.20 ppm and the triplet methylene peak of polylactone at 4.00 ppm. As expected, plots of ln([CL]₀/[CL]) vs. time for a wide range of Al complexes are linear, indicating the usual first order dependence on monomer concentration (Figures 4, Table S1). Thus, the rate expression can be written as -d[CL]/ $dt = k_{obs}$ [CL]¹, where $k_{obs} = k_{app}$ [Al complex + 2 BnOH]^x. A plot of (k_{obs}) vs. [Al complex + 2 BnOH] (Figure S1, Table S2) is linear, indicating the order of [Al complex + 2 BnOH] (x = 1) and k_{app} which is 0.296 M⁻¹min⁻¹.

Time/min	L ^{CIBF} AIMe ₂	L ^{CICI} AIMe ₂	L ^{CIII} AIMe ₂	L ⁿⁿ AlMe ₂	L ^{CIO} AIMe ₂			
	Conversion of PCL							
2	0.34	0.10	0.10	0.09				
4	0.55	0.33	0.29	0.26	0.085			
6	0.78	0.67	0.50	0.51	0.25			
8	0.86	0.83	0.64	0.60				
10		0.89	0.73	0.67	0.54			
12	0.96	0.92	0.78		0.67			
20			0.92	0.80	0.86			
25				0.95	0.90			
30					0.94			
k _{obs}	0.284 (12)	0.260 (17)	0.136 (4)	0.115 (8)	0.105 (4)			
Induction period/min	0.83 (31)	1.79 (51)	0.94 (34)	0.78 (102)	2.60 (69)			
R ²	0.997	0.992	0.997	0.986	0.996			

Table S1. The kinetic study of polymerizations of ε-caprolactone using various Al complexes as catalysts

Table S2. The kinetic study of polymerizations of ε -caprolactone using various concentrations of

L ^{CIBr} AlMe ₂ as a catalyst and BnOH as an	initiator
--	-----------

Time (min)			$[L^{ClBr}AlMe_2 + 2 B]$	BnOH]	
	5 mM	10 mM	20 mM	25 mM	30 mM
2			0.34	0.22	0.32
3		0.071			
4			0.55	0.52	0.69
6		0.13	0.78	0.76	0.87
8			0.86	0.87	0.95
10		0.23		0.94	
15		0.34	0.96		
20		0.47			
30	0.087	0.65			
60	0.16	0.93			
120	0.32				
150	0.42				
180	0.49				
210	0.56				
253	0.65				
373	0.82				
$k_{obs} \times 10^3$	4.76 (21)	36.54 (18)	284.14 (1221)	321.81(1346)	434.96(1344)
Induction period/min	28	2	1	1	1
R ²	0.994	0.995	0.997	0.997	0.999

Figure S1. First-order kinetic plots of CL polymerization with various concentrations of $[L^{ClBr}AlMe_2 + 2 BnOH]$ plotted against time with [CL] = 2.0 M in toluene 5 mL

Figure S2. ¹H NMR spectrum of L^{CIBr}AlMe₂

Figure S3. ¹³C NMR spectrum of L^{CIBr}AlMe₂

Figure S4. ¹H NMR spectrum of L^{CICI}AlMe₂

Figure S5. ¹³C NMR spectrum of L^{CICI}AIMe₂

Figure S6. ¹H NMR spectrum of L^{CIH}AlMe₂

Figure S7. ¹³C NMR spectrum of L^{CIH}AlMe₂

Figure S8. ¹H NMR spectrum of L^{HH}AlMe₂

Figure S9. ¹³C NMR spectrum of L^{HH}AlMe₂

Figure S10. ¹H NMR spectrum of L^{CIO}AlMe₂

Figure S11. ¹³C NMR spectrum of L^{CIO}AlMe₂

Figure S12. ¹H NMR spectrum of O^H₂AlMe

Figure S13. ¹³C NMR spectrum of O^H₂AlMe

Figure S14. ¹H NMR spectrum of O^{OMe}₂AlMe

Figure S15. ¹³C NMR spectrum of O^{OMe}₂AlMe

Figure S16. ¹H NMR spectrum of O^{CIBr}₂AlMe

Figure S17. MALDI-TOF spectrum of PCL (matrix: DCTB; ionization salt: NaI; solvent: CH₂Cl₂, entry 9, Table 3)

Figure S18. ¹H NMR spectrum of L^{CIBr}-H and 2-(4-bromophenyl)-5-chlorobenzothiazole

Figure S19. ¹H NMR spectrum of L^{CICI}-H and 2-(4-clorophenyl)-5-chlorobenzothiazole

Figure S20. ¹H NMR spectrum of L^{CIO}-H and 5-chloro-2-(4-methoxyphenyl)benzothiazole

Figure S21. ¹H NMR spectrum of L^{CIH}-H and 5-chloro-2-phenylbenzothiazole

Figure S22. ¹H NMR spectrum of L^{HH}-H and 2-phenylbenzothiazole

Table 55. Crystal data and structure term	$\operatorname{Hem}(4).$	
Identification code	d19159	
Empirical formula	C15 H15 AI CI N S	
Formula weight	303.77	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 11.8748(9) Å $a = 9$	90°.
	b = 12.7887(10) Å b= 1	17.102(2)°.
	c = 11.2417(7) Å g =	90°.
Volume	1519.74(19) Å ³	
Ζ	4	
Density (calculated)	1.328 Mg/m ³	
Absorption coefficient	0.432 mm ⁻¹	
F(000)	632	
Crystal size	0.42 x 0.20 x 0.08 mm ³	
Theta range for data collection	2.50 to 25.05°.	
Index ranges	-12<=h<=14, -15<=k<=15, -13	3<=1<=13
Reflections collected	28773	
Independent reflections	2685 [R(int) = 0.0570]	
Completeness to theta = 25.05°	99.8 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9663 and 0.8395	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	2685 / 0 / 173	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2sigma(I)]	R1 = 0.0324, wR2 = 0.0753	
R indices (all data)	R1 = 0.0429, wR2 = 0.0816	
Largest diff. peak and hole	0.246 and -0.251 e.Å ⁻³	

 Table S3.
 Crystal data and structure refinement for L^{CIH}AlMe₂ (4).

	X	у	Z	U(eq)
C(1)	7848(2)	3691(2)	6293(2)	35(1)
C(2)	6480(2)	1474(2)	6723(2)	39(1)
C(3)	3604(2)	3318(2)	4416(2)	28(1)
C(4)	2320(2)	3231(2)	3528(2)	34(1)
C(5)	1404(2)	3396(2)	3935(2)	36(1)
C(6)	1761(2)	3647(2)	5253(2)	31(1)
C(7)	3015(2)	3758(1)	6161(2)	27(1)
C(8)	3935(2)	3613(1)	5735(2)	24(1)
C(9)	5585(2)	4386(1)	7592(2)	26(1)
C(10)	6839(2)	4499(1)	8700(2)	25(1)
C(11)	7173(2)	5454(2)	9366(2)	35(1)
C(12)	8344(2)	5587(2)	10443(2)	44(1)
C(13)	9189(2)	4768(2)	10886(2)	42(1)
C(14)	8864(2)	3811(2)	10258(2)	36(1)
C(15)	7696(2)	3672(2)	9171(2)	29(1)
Al(1)	6351(1)	2896(1)	6042(1)	25(1)
Cl(1)	611(1)	3796(1)	5796(1)	46(1)
N(1)	5255(1)	3708(1)	6641(1)	23(1)
S(1)	4776(1)	3081(1)	3900(1)	38(1)

Table S4. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for L^{CIH}AIMe₂ (4). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-Al(1)	1.953(2)	
C(1)-H(1A)	0.9800	
C(1)-H(1B)	0.9800	
C(1)-H(1C)	0.9800	
C(2)-Al(1)	1.951(2)	
C(2)-H(2A)	0.9377	
C(2)-H(2B)	0.9150	
C(2)-H(2C)	0.8880	
C(3)-C(4)	1.395(3)	
C(3)-C(8)	1.401(3)	
C(3)-S(1)	1.761(2)	
C(4)-C(5)	1.375(3)	
C(4)-H(4)	0.9500	
C(5)-C(6)	1.381(3)	
C(5)-H(5)	0.9500	
C(6)-C(7)	1.376(3)	
C(6)-Cl(1)	1.741(2)	
C(7)-C(8)	1.392(3)	
C(7)-H(7)	0.9500	
C(8)-N(1)	1.433(2)	
C(9)-N(1)	1.290(2)	
C(9)-C(10)	1.449(3)	
C(9)-H(9)	0.9500	
C(10)-C(11)	1.393(3)	
C(10)-C(15)	1.394(3)	
C(11)-C(12)	1.376(3)	
C(11)-H(11)	0.9500	
C(12)-C(13)	1.377(3)	
C(12)-H(12)	0.9500	
C(13)-C(14)	1.377(3)	
C(13)-H(13)	0.9500	
C(14)-C(15)	1.380(3)	
C(14)-H(14)	0.9500	
C(15)-H(15)	0.9500	
Al(1)-N(1)	2.0074(16)	
Al(1)-S(1)	2.2904(8)	
Al(1)-C(1)-H(1A)	109.5	

Table S5.Bond lengths [Å] and angles [°] for $L^{CIH}AIMe_2$ (4).

Al(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
Al(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
Al(1)-C(2)-H(2A)	116.9
Al(1)-C(2)-H(2B)	119.1
H(2A)-C(2)-H(2B)	110.8
Al(1)-C(2)-H(2C)	112.3
H(2A)-C(2)-H(2C)	104.7
H(2B)-C(2)-H(2C)	88.4
C(4)-C(3)-C(8)	117.88(19)
C(4)-C(3)-S(1)	121.34(15)
C(8)-C(3)-S(1)	120.78(15)
C(5)-C(4)-C(3)	121.43(19)
C(5)-C(4)-H(4)	119.3
C(3)-C(4)-H(4)	119.3
C(4)-C(5)-C(6)	119.38(19)
C(4)-C(5)-H(5)	120.3
C(6)-C(5)-H(5)	120.3
C(7)-C(6)-C(5)	121.25(19)
C(7)-C(6)-Cl(1)	119.03(16)
C(5)-C(6)-Cl(1)	119.70(16)
C(6)-C(7)-C(8)	119.02(18)
C(6)-C(7)-H(7)	120.5
C(8)-C(7)-H(7)	120.5
C(7)-C(8)-C(3)	120.96(17)
C(7)-C(8)-N(1)	121.29(16)
C(3)-C(8)-N(1)	117.68(17)
N(1)-C(9)-C(10)	125.72(17)
N(1)-C(9)-H(9)	117.1
C(10)-C(9)-H(9)	117.1
C(11)-C(10)-C(15)	118.77(18)
C(11)-C(10)-C(9)	118.60(17)
C(15)-C(10)-C(9)	122.52(17)
C(12)-C(11)-C(10)	120.5(2)
C(12)-C(11)-H(11)	119.8
C(10)-C(11)-H(11)	119.8
C(11)-C(12)-C(13)	120.2(2)
C(11)-C(12)-H(12)	119.9

С(13)-С(12)-Н(12)	119.9
C(12)-C(13)-C(14)	120.14(19)
С(12)-С(13)-Н(13)	119.9
С(14)-С(13)-Н(13)	119.9
C(13)-C(14)-C(15)	120.17(19)
C(13)-C(14)-H(14)	119.9
C(15)-C(14)-H(14)	119.9
C(14)-C(15)-C(10)	120.25(18)
C(14)-C(15)-H(15)	119.9
C(10)-C(15)-H(15)	119.9
C(2)-Al(1)-C(1)	121.65(10)
C(2)-Al(1)-N(1)	107.32(8)
C(1)-Al(1)-N(1)	111.62(8)
C(2)-Al(1)-S(1)	112.90(8)
C(1)-Al(1)-S(1)	110.58(7)
N(1)-Al(1)-S(1)	87.46(5)
C(9)-N(1)-C(8)	117.85(16)
C(9)-N(1)-Al(1)	128.84(13)
C(8)-N(1)-Al(1)	112.54(11)
C(3)-S(1)-Al(1)	93.50(7)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U ²³	U13	U12	
C(1)	36(1)	35(1)	42(1)	-4(1)	24(1)	-6(1)	
C(2)	54(2)	26(1)	51(1)	0(1)	36(1)	1(1)	
C(3)	32(1)	24(1)	26(1)	-1(1)	13(1)	-3(1)	
C(4)	36(1)	32(1)	26(1)	1(1)	6(1)	-5(1)	
C(5)	26(1)	31(1)	38(1)	8(1)	4(1)	-4(1)	
C(6)	25(1)	25(1)	44(1)	11(1)	16(1)	2(1)	
C(7)	28(1)	25(1)	29(1)	3(1)	13(1)	2(1)	
C(8)	24(1)	20(1)	25(1)	2(1)	9(1)	-1(1)	
C(9)	27(1)	25(1)	26(1)	0(1)	13(1)	2(1)	
C(10)	28(1)	26(1)	23(1)	-1(1)	13(1)	-1(1)	
C(11)	40(1)	26(1)	30(1)	-3(1)	10(1)	3(1)	
C(12)	51(2)	28(1)	36(1)	-7(1)	5(1)	-9(1)	
C(13)	36(1)	40(1)	32(1)	3(1)	1(1)	-9(1)	
C(14)	31(1)	36(1)	33(1)	7(1)	8(1)	5(1)	
C(15)	33(1)	26(1)	28(1)	-2(1)	13(1)	-2(1)	
Al(1)	27(1)	24(1)	28(1)	-2(1)	17(1)	-2(1)	
Cl(1)	29(1)	49(1)	64(1)	17(1)	26(1)	8(1)	
N(1)	23(1)	23(1)	22(1)	1(1)	10(1)	0(1)	
S(1)	39(1)	52(1)	25(1)	-7(1)	16(1)	-1(1)	
~ /			~ /	~ /	~ /	~ /	

Table S6. Anisotropic displacement parameters ($Å^2x \ 10^3$) for d19159. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	Х	у	Z	U(eq)	
H(1A)	8595	3402	7049	53	
H(1B)	7741	4425	6473	53	
H(1C)	7958	3646	5481	53	
H(2A)	6338	1384	7471	47	
H(2B)	6134	936	6130	47	
H(2C)	7237	1196	6958	47	
H(4)	2074	3055	2622	41	
H(5)	534	3338	3315	43	
H(7)	3249	3930	7066	33	
H(9)	4950	4852	7562	31	
H(11)	6588	6018	9076	42	
H(12)	8570	6244	10882	53	
H(13)	9999	4864	11626	50	
H(14)	9445	3245	10574	43	
H(15)	7476	3010	8741	35	

Table S7.Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)for L^{CIH}AlMe₂ (4).