Supporting information

Crown-substituted naphthalocyanines: synthesis and supramolecular control over aggregation and photophysical properties


aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskii pr., 31, building 4, Moscow, Russia
bN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskii pr., 31, Moscow, Russia

Fig. S1 HR ESI mass-spectrum of 1Mg .................................................................2
Fig. S2 HR ESI mass-spectrum of 1H2 ..................................................................2
Fig. S3 HR ESI mass-spectrum of 1Zn .................................................................2
Fig. S4 1H NMR spectrum of 1Mg in DMSO-d6 ....................................................3
Fig. S5 Dependence of UV-Vis spectra of 1Mg in CHCl3:MeOH (9:1) on temperature ..........................................................3
Fig. S6 Dependence of UV-Vis spectra of 1Zn in CHCl3:MeOH (9:1) on temperature (heating from 5°C to 60°C) .......................4
Fig. S8 Interaction of 1Mg in CHCl3:MeOH (9:1) with 2 eq. KOAc in time ..........5
Fig. S9 Interaction of 1Zn in CHCl3:MeOH (9:1) with 2 eq. KOAc in time ..........5
Fig. S10 Interaction of 1H2 in CHCl3:MeOH (9:1) with 2 eq. KOAc..................6
Fig. S11 Spectrophotometric titration of cofacial dimer (1Zn)2K4 in CHCl3:MeOH (9:1) with [2.2.2]cryptand..........................6
Fig. S12 Spectrophotometric titration of cofacial dimer (1H2)2K4 in CHCl3:MeOH (9:1) with [2.2.2]cryptant.................................7
Fig. S13 Changes in UV-Vis spectrum of dimer (1Mg)2K4 in CHCl3:MeOH (9:1) upon irradiation of laser (λ=670 nm) ..............7
Fig. S14 Changes in UV-Vis spectrum of monomer 1Mg upon irradiation of laser (λ=670 nm) in CHCl3:MeOH (9:1) ......................8
Fig. S15 Changes in UV-Vis spectrum of monomer 1Zn upon irradiation of laser (λ=670 nm) in CHCl3:MeOH (9:1) .................8
Fig. S16 Changes in UV-Vis spectrum of monomer 1H2 upon irradiation of laser (λ=670 nm) in CHCl3:MeOH (9:1) .................9
Fig. S1 HR ESI mass-spectrum of \( 1\text{Mg} \)

Fig. S2 HR ESI mass-spectrum of \( 1\text{H}_2 \)

Fig. S3 HR ESI mass-spectrum of \( 1\text{Zn} \)
**Fig. S4** $^1$H NMR spectrum of 1Mg in DMSO-$d_6$

**Fig. S5** Dependence of UV-Vis spectra of 1Mg in CHCl$_3$:MeOH (9:1) on temperature. Starting solution of the monomeric form was obtained by heating of the aggregated complex in CHCl$_3$:MeOH (9:1) to 65°C (see Fig 2 in the paper).
Fig. S6 Dependence of UV-Vis spectra of 1Zn in CHCl₃:MeOH (9:1) on temperature (heating from 5°C to 60°C)

Fig. S7 Dependence of UV-Vis spectra of 1H₂ in CHCl₃:MeOH (9:1) on temperature (heating from 5°C to 60°C)
**Fig. S8** Interaction of $\textbf{1Mg}$ in CHCl$_3$:MeOH (9:1) with 2 eq. KOAc in time

**Fig. S9** Interaction of $\textbf{1Zn}$ in CHCl$_3$:MeOH (9:1) with 2 eq. KOAc in time
Fig. S10 Interaction of 1H₂ in CHCl₃:MeOH (9:1) with 2 eq. KOAc

Fig. S11 Spectrophotometric titration of cofacial dimer (1Zn)₂K₄ in CHCl₃:MeOH (9:1) with [2.2.2]cryptand
**Fig. S12** Spectrophotometric titration of cofacial dimer (1H₂)₂K₄ in CHCl₃:MeOH (9:1) with [2.2.2]cryptand

**Fig. S13** Changes in UV-Vis spectrum of dimer (1Mg)₂K₄ in CHCl₃-MeOH (9:1) upon irradiation of laser (λ=670 nm)
Fig. S14 Changes in UV-Vis spectrum of monomer $1\text{Mg}$ upon irradiation of laser ($\lambda=670$ nm) in CHCl$_3$-MeOH (9:1)

Fig. S15 Changes in UV-Vis spectrum of monomer $1\text{Zn}$ upon irradiation of laser ($\lambda=670$ nm) in CHCl$_3$-MeOH (9:1)
Fig. S16 Changes in UV-Vis spectrum of monomer $1\text{H}_2$ upon irradiation of laser ($\lambda=670$ nm) in CHCl$_3$-MeOH (9:1)