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Experimental Section
Preparation of Compounds. All reactions and manipulations were performed under a

pure argon atmosphere using either standard Schlenk techniques or an inert atmosphere box.
Solvents were dried following standard procedures.! HN-Et-HPTB? was synthesized following a
reported procedure.? All the chemicals were obtained from commercial sources and were used
without further purification. All the filtrations were performed through Celite and solvent
removal steps were carried out in vacuo inside an inert atmosphere glove box under dinitrogen
atmosphere. Yields reported for iron complexes in each case are for recrystallized compounds,
calculated using corresponding molecular weights of the compounds shown in table S1 with the
consideration that one equivalent of ligand will produce one equivalent of the dinuclear
complexes.

[Fe;(N-Et-HPTB)(SH)(H,0)](BF ;);>DMF (1a). To a mixture of H-N-Et-HPTB (0.08 mmol, 57.8
mg), Et;N (0.12 mmol, 12.1 mg) and NaS'Bu (0.12 mmol, 15 mg) in 2 mL of DMF was added
Fe(BF,),-6H,0 (0.16 mmol, 54.5 mg) with stirring and the resultant slurry was stirred for 6h.
The reaction mixture was filtered. Et,O was allowed to diffuse into the pale yellow filtrate
overnight at —35°C with additional standing for 1 day at RT to afford 1a as a colorless crystalline
solid (68 mg, 75%). Under identical reaction conditions, use of ‘BuSH and PhCH,SH instead of
NaS'Bu afforded 1a in 71% (77 mg) and 33% (30 mg) yields respectively. IR (KBr pellet): vsy =
2515 cm™!. ESI-MS (in MeCN): m/z = 463.12 (calculated m/z from simulation = 463.65) for
[Fe,(N-Et-HPTB)(SH)(H,0)(MeCN)]?*. XPS: Binding energy = 162.25 eV (S 2P), 709.85 eV

(Fe 2P5,, level), 722.97 eV (Fe 2P, level), 714.60 eV (satellite peak).

In an alternate method, NaS‘Bu (0.06 mmol, 7.2mg) was added with stirring to a solution of
[Fe,(N-Et-HPTB)(DMF),](BF,);%* (0.04mmol, 55.5 mg) and Et;N (0.06 mmol, 6.4 mg) in 2 mL

of DMF. The reaction mixture was stirred for 4h and filtered. Et,O was allowed to diffuse into
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the pale yellow filtrate overnight at —35°C with additional standing for 1 day at RT to afford 1a

as a colorless crystalline solid (30 mg, 62%).

In some cases, [Fe)(N-Et-HPTB)(SH)(DMF),]|(BF,),:2DMF (1b) was isolated during the
synthesis of 1a. It may be noted that 1a and 1b essentially represent the same compound except
for the nature of the coordinating solvents. Reasonable elemental analysis could not be obtained

for 1a, possibly due to the formation of 1b along with 1a during the synthesis of 1a.

[Fe;(N-Et-HPTB)(CIl)(DMF),](BF ;) 2DMF (2). To a mixture of H-N-Et-HPTB (0.08 mmol,
57.8 mg), EzN (0.12 mmol, 12.1 mg) and (BuyN)(CI) (0.12 mmol, 33.5 mg) in 2 mL of DMF
was added Fe(BF,),-6H,0 (0.16 mmol, 54.5 mg) with stirring and the resultant slurry was stirred
for 6h. The reaction mixture was filtered. Et,O was allowed to diffuse into the colorless filtrate
overnight at —35°C with additional standing for 1 day at RT to afford the product as a colorless
crystalline solid (68 mg, 64%). Anal Calcd for CssH7;B,ClFgFe;N;,05-1H,O (2.H,0): C,
48.82%; H, 5.88%; N, 14.49%. Found C, 49.02%; H, 5.88%; N, 14.67%. ESI-MS: m/z =

434.552 (calculated m/z from simulation = 435.131) for [Fe,(N-Et-HPTB)(CI)(DMF),]*".

[Fex(N-Et-HPTB)(SH)(H,0)(DMF),](BF 4); (3). A solution of (Cp,Fe)(BF,) (0.075mmol, 20.4
mg ) in I mL of MeCN was added dropwise into a solution of 1a (0.05mmol, 72mg) in 1 mL of
MeCN with stirring. The stirring was continued for 2 h, after which the solvent was evaporated
to dryness. The solid residue was washed thoroughly with THF and the residue was then
dissolved in 1 mL of DMF and filtered through Celite. Et,O was allowed to diffuse into the red
colored filtrate overnight at —35°C with additional standing for 1 day at RT to afford the product
as red colored crystalline solid (52 mg, 81%). Anal Calcd for C49HgsB3F2Fe;N1,04S,-C3HZNO

(3-C5H;NO): C, 45.81%; H, 5.32%; N, 13.36%. Found C, 45.80%; H, 5.19; N, 13.52%. IR (KBr
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pellet): vy = 2515 cm™!. ESI-MS: m/z = 344.455 (calculated m/z from simulation = 344.466) for
[Fe (N-Et-HPTB)(SH)(H,O)(DMF),]3*. Solution magnetic moment (u.g) for three different
batches of 3: 1.793 BM, 1.800 BM, 1.780 BM (theoretical ue = 1.732 for S = % system). UV-
Vis-NIR: Apa = 1430 nm, ¢ = 310 (= 30) M ! em™! (inter-valence charge transfer). XPS: Binding
energy = 162.72 eV (S 2P);709.41 eV and 711.56 eV (Fe 2P;5,); 722.25 eV (Fe 2P,y); 714.75 eV

and 718.50 eV (satellite peaks).

[Fe>(N-Et-HPTB)(Cl)(H,0)(DMF),](BF,); (4). A solution of (Cp,Fe)(BF,) (0.075mmol, 20.4
mg ) in 1 mL of MeCN was added dropwise into a solution of 2 (0.05mmol, 67mg) in 1 mL of
MeCN with stirring. The stirring was continued for 2 h, after which the solvent was evaporated
to dryness. The solid residue was washed thoroughly with THF and the residue was then
dissolved in 1 mL of DMF and filtered through Celite. Et,O was allowed to diffuse into the red
colored filtrate overnight at —35°C with additional standing for 1 day at RT to afford the product
as red colored crystalline solid (52 mg, 80%). Anal Calcd for C49HgsB3;CIF,Fe;N1,04 (4): C,
45.49%; H, 5.06%; N, 12.99%. Found C, 45.01%; H, 4.73%; N, 13.12%. ESI-MS: m/z =
345.153 (calculated m/z from simulation = 345.129) for [Fe,(N-Et-HPTB)(CI)(H,O)(DMF),]*".
Solution magnetic moment (u.g) for three different batches of 4: = 1.818 BM, 1.798 BM and
1.817 BM (theoretical uepr = 1.732 for S = % system). UV-Vis-NIR: 4., = 1430 nm, & = 190 (+
5) M~! cm™! (inter-valence charge transfer). XPS: Binding energy = 196.81 ¢V (Cl 2P35,), 198.34
eV (CI 2Py)); 709.34 eV and 711.72 eV (Fe 2P3),); 722.86 (Fe 2Py)); 715.25 eV and 718.08 eV

(satellite peaks).

General Physical Methods. Elemental analysis was recorded using a Perkin-Elmer 2400 series
IT CHNS analyzer. Electronic absorption spectra of the complexes were recorded using a Cary 60
UV-Vis spectrophotometer. High resolution mass spectra were recorded using Q-Tof-micro MS
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system using electron spray ionization (ESI) techniques. Electrochemical studies of the
complexes (1073 M in MeCN) were performed using a CHI620E electrochemical analyzer (CH
Instruments, USA). A three electrode setup was employed, consisting of a glassy carbon working
electrode, a platinum wire auxiliary electrode, and a silver wire (as the pseudo-reference
electrode). Tetra-n-butylammonium hexafluorophosphate (0.1 M) was used as the supporting
electrolyte. Electrochemical potentials are referenced internally to the ferrocene/ferrocenium
couple at 0.0 V. Fourier transform infrared spectroscopy on KBr pellets was performed on a
Shimadzu FT-IR 8400S instrument. Solution electronic spectra (single and time-dependent) for
the oxygenation study of diiron complexes were measured on an Agilent 8453 diode array
spectrophotometer. UV-vis-NIR absorption spectra were recorded on a Perkin-Elmer Lambda
950 UV/vis spectrophotometer and a J&M TIDAS instrument. 3'P NMR and 'H NMR spectra
were taken on a Bruker Avance DPX 300/400 MHz spectrometer.XPS analysis of the complexes
was carried out by using a X- ray photoelectron spectroscopic (XPS, Omicron, model:1712-62-
11) method. Measurement was done by using an Al-K, radiation source under 15kV voltages and

5 mA current.

Gas Chromatographic Methods. GC—MS measurements were carried out either with a Thermo
Scientific Trace 1310 gas chromatograph coupled with a ISQ QD Mass spectrometer with a
maximum temperature 300°C using a TG-5MS (30m x 0.25mm x 0.25 um) column or a Perkin-
Elmer Clarus 600 using an Elite 5 MS (30 m X 0.25 mm X 0.25 pm) column with a maximum
temperature of 300 °C. The samples for the GC experiments were prepared from the crude
reaction mixture containing [Fe,(N-Et-HPTB)(DMF),](BF,);, thiols/sodium salt of thiolate, Et;N
in DMF obtained after isolating the crystals of 1a/1b by addition of Et,O and thereby making the

solution metal free. To this crude reaction solution (DMF/Et,0), 0.05 mmol of mesitylene
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(external standard) was added since 0.05 mmol of [Fe,(N-Et-HPTB)(DMF)4](BF4); was used
during the synthesis of 1a/1b with different thiols. From this homogeneous solution 1.0 puL. was
injected in GCMS for analysis. Yield of the organic product = Response factor x 100% = (Area
under the curve of organic product) / (Area under the curve of mesitylene) x 100%.

3IP NMR Spectroscopic Measurements.

Oxygen was purged for 30 seconds into a solution of 55 mg (0.05mmol) of 1a in 3 ml MeCN at
—40°C to generate a blue colored solution (characteristic of 1a-O,). The blue solution was then
allowed to warm up to RT and kept standing for overnight. The solution was then evaporated to
dryness. A solution of PPh; (0.1 mmol, 26.2 mg) in 1 ml CDCl; was added into the residue and
the mixture was stirred overnight under inert atmosphere. The reaction mixture was filtered
through celite and 3'P NMR spectrum of the filtrate was recorded (figure S24).

In another experiment, oxygen was purged for 30 seconds into a solution of 55 mg (0.05mmol)
of 1a in 3 ml MeCN at —40°C to generate a blue colored solution (characteristic of 1a-O,). Pre-
cooled Et,0O was added into the solution maintained at —40°C to immediately precipitate 1a-O,.
After 10 minutes, 2 mL of pre-cooled toluene was added into the solution and the mixture was
stirred overnight at —40°C. The reaction mixture was then filtered and the filtrate was evaporated.
A solution of PPh; (0.1 mmol, 26.2 mg) in 1 ml CDCl; was added into the residue and the
mixture was stirred overnight at RT under inert atmosphere. The reaction mixture was filtered
through celite and 3'P NMR spectrum of the filtrate was recorded (figure S25).

In a blank experiment, 1.6 mg (0.05 mmol) of elemental sulfur (Sg) was stirred overnight in 2 mL
of toluene at —40°C. The reaction mixture was then filtered and the filtrate was evaporated. A

solution of PPh; (0.1 mmol, 26.2 mg) in 1 ml CDCIl; was added into the residue and the mixture
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was stirred overnight at RT under inert atmosphere. The reaction mixture was filtered through
celite and 3'P NMR spectrum of the filtrate was recorded (figure S26).

X-ray Structure Determinations. The molecular structures of the 4 compounds 1a, 1b, 2 and 3
were determined by single crystal X-ray structure determinations. It may be noted that the final R
values for two X-ray structures (la and 2) are higher than 10%. Despite of attempted
crystallization from different solvent combinations, we could not get better crystals for these
complexes. Also, it may be possible that there is a S/O disorder in the X-ray structures of 1a and
3, which could not be modeled due to unavailability of good data set. Nevertheless, in addition to
single crystal X-ray structure determination, identity and bulk purity for 1a, 1b, 2 and 3 were
determined by a combination of elemental analysis, ESI-MS, cyclic voltammetry, IR
spectroscopy, UV-Vis and UV-Vis NIR spectroscopy, solution magnetic measurements by Evans
method and X-ray photoelectron spectroscopy. Diffraction-quality crystals were obtained as
described in the syntheses of the respective compounds. Single crystals were coated with Parabar
oil and were mounted under 100 K nitrogen cold stream. Data collections were performed either
on a Bruker SMART APEX-II diffractometer with graphite—-monochromated Mo Ka radiation (A
= 0.71073 A) controlled by the APEX II (v. 2010.1-2) software package (1b) or by using a
Bruker D8 VENTURE Microfocus diffractometer equipped with PHOTON II Detector, with Mo
Ka radiation (A = 0.71073 A), controlled by the APEX III (v2017.3—0) software package (1a, 2
and 3). The raw data were integrated and corrected for Lorentz and polarization effects with the
aid of the Bruker APEX II/APEX III program suite.> Absorption corrections were performed by
using SADABS. Space groups were assigned by systematic absences (determined by XPREP)
and analysis of metric symmetry and were further checked in each case by PLATONS’ for

additional symmetry. Structures were solved by direct methods and refined against all data in the
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reported 20 ranges by full-matrix least squares on F? using the SHELXL program suite® in the
OLEX 2° interface. Hydrogen atoms at idealized positions were included in final refinements.
The OLEX 2 interface was used for structure visualization as well as for drawing ORTEP!%.!1
plots. Complexes 1b and 3 contain severely disordered solvent molecules (DMF) which were
treated using MASK procedure in OLEX2 (equivalent to SQUEEZE in PLATON). Details of the
MASK procedure and results are provided in the respective cifs. Crystallographic data and final
agreement factors are provided in table 1. Further details on the crystal structure investigation(s)
may be obtained from the Cambridge Crystallographic Data Centre (CCDC)

using www.ccdc.cam.ac.uk/deposit. CCDC 1871395-1871398 contain the supplementary

crystallographic data for this paper. These data are provided free of charge by The Cambridge

Crystallographic Data Centre.
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Table S1. X-ray crystallographic data for compounds 1a, 1b, 2 and 32.
compounds la 1b 2 3
CCDCentry 1871397 1871396 1871398 1871395
E’(n)lperamre 100(2) 100(2) 100(2) 100(2)
formula C46H59B2F8F62N1 1O3S C55H78B2F8F62N1405S C55H77B2C1F3F62N1405 C49H66B3F12F62N1204S
formula 1131.42 1332.69 1335.07 1291.32
weight
crystal monoclinic triclinic triclinic triclinic
system
space group  P2,/n P-1 P-1 P-1
a, 13.9837(16) 12.226(2) 12.253(3) 13.584(4)
b, A 22.878(3) 15.384(3) 15.368(4) 14.829(4)
c, A 16.0002(16) 18.398(3) 18.420(5) 19.058(5)
a, deg 90 102.922(5) 102.748(8) 67.164(9)
B, deg 97.816(3) 96.739(5) 96.655(7) 72.810(9)
v, deg 90 98.616(6) 98.924(7) 76.576(9)
Vv, A3 5071.2(10) 3293.5(10) 3301.6(14) 3349.9(17)
Z 4 2 2 2
Pealeds gM/cm’  1.482 1.344 1.343 1.280
u, mm-! 0.695 0.550 0.557 0.544
O range, deg  2.196-25.746 2.300-25.619 2.197-25.834 2.340-25.837
completeness
00, % 99.6 97.1 97.5 98.4
reflections 159703 26542 30663 32546
collected
independent s, 12066 12419 12753
reflections
R(int) 0.1543 0.0653 0.0961 0.0827
restraintsP 93 42 7 142
parameters 568 776 772 674
Max., min. 7453 0.6561 0.7452, 0.4597 0.7453, 0.4962 0.7453, 0.5899
transmission
R1¢(wR2)4
(o2sigmaqry 1418 (04088) 0.0918 (0.2053) 0.1013 (0.2707) 0.0913 (0.2535)
RISWR2)d  0.2097 (0.4539) 0.1296 (0.2338) 0.1737 (0.3187) 0.1189 (0.2793)
GOF(F2)° 1.613 1.032 1.032 1.074
. .
max, . 732, -1.212 1.081, -0.728 0.868, —0.696 1.379,-1.212
peaks, e. A

“Mo Ka radiation (A = 0.71073 A). ®1a, disordered BF,~, DMF and ligand; 1b, disordered BF,~ and DMF;
2, disordered BF,~ and DMF; 3, disordered BF;-, DMF and ligand. ‘R1 = X||Fo|-|Fc|[/Z[Fo|. ‘WR2 =
{Z[w(Fo2-Fc2)2]/Z[w(F02)2]/2. *GOF = {Z[w(Fo02—Fc2)2]/(n—p)}1/2, where n is the number of data and
p is the number of refined parameters. felectron density near: 1a; —SH; 1b, —SH; 2, Fe2; 3, O2 (terminal
water).
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Figure S1. (a) Calculation of yield (82%) using Gas Chromatography by comparing area under the
curve with externally added standard (mesitylene) and (b) GCMS data for fert-butanol generated

during the synthesis of 1a via desulfurization of NaS’Bu.
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generated during the synthesis of 1a via desulfurization of benzylthiol.
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Figure S3. Molecular structure for the cationic part of 2 with 30% probability thermal ellipsoids

and partial atom labelling scheme. Hydrogen atoms are omitted for clarity.
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Figure S4. IR spectra (solid, KBr pellet) for 1a, 2, 3 and 4.
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scans are shown.
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Figure S7. Cyclic voltammetric traces (multiple scans, scan rate = 100 mV/scan) forl mM

solution of 3 in dichloromethane in the full potential range. Both anodic (a) and cathodic (b)

scans are shown.
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Figure S10. NIR spectroscopic signatures for 1a, 3 and 4 in DMF ([1a] = [3] = [4] =2 mM).
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Figure S11. Absorption spectroscopic signatures for 3 and 4 as solid samples.
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Figure S12. Mass spectrometric data for 1a in MeCN. m/z calculated for [Fe,(N-Et-
HPTB)(SH)(H,0)(MeCN)]?>" = 463.655 (simulated, green line) , m/z observed = 463.123 (red

line).
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Figure S13. Mass spectrometric data for 2 in MeCN. m/z calculated for [Fe(N-Et-

TOF MS ES+

HPTB)(CI)(DMF),]?>* = 435.131 (simulated, red line), m/z observed = 434.552 (green line).
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Figure S14. Mass spectrometric data for 3 in MeCN. m/z calculated for [Fe,(N-Et-
344.466 (simulated, green line) , m/z observed = 344.964 (red

HPTB)(SH)(H,0)(DMF),]**

line).
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Figure S15. Mass spectrometric data for 4 in MeCN. m/z calculated for [Fe,(N-Et-

HPTB)(CI)(H,0)(DMF),]3*
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Figure S16. X-ray photoelectron spectroscopic data showing binding energy for the sulfur 2p

levels of (a) 1a and (b) 3.
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Figure S17. X-ray photoelectron spectroscopic data showing binding energy for the (a) Fe 2p
levels and (b) chlorine 2p levels of 2.
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Figure S18. Full range plot of the X-ray photoelectron spectroscopic data for (a) 1a and (b) 2.
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Figure S19. X-ray photoelectron spectroscopic data showing binding energy for the (a) Fe 2p
levels and (b) chlorine 2p levels of 4.
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Figure S20. Full range plot of the X-ray photoelectron spectroscopic data for (a) 3 and (b) 4.
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Figure S21. Kinetic plots for the initial rate of formation of (a) 1a-O, and (b) 2-O, at —80°C.
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Figure S22. Absorption spectroscopic monitoring for the decomposition of (a) 1a-O, and (b)
2:0; at RT. [1a] = 0.75 mM in CH,CI,:DMSO (10:1), O, purged for 30 seconds, scan rate = 15
seconds/scan, total time = 120 minutes. [2] = 0.5 mM in CH,Cl,:DMSO (10:1), O, purged for 10

seconds, scan rate = 15 seconds/scan, total time = 110 minutes.
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Figure S23. Kinetic plots (decomposition traces and half life calculations) for the decomposition
of (a) 1a-O; (t;», = 15.4 minutes) and (b) 2:O, (t;», = 22.8 minutes) at RT. Decomposition
product in each case was characterized as [Fe4(N-Et-HPTB),(u-O)3(H,0),](BF,),.4
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Figure S24. 3'P NMR spectrum for the product obtained after reaction of 1a-O, with PPh; at RT
showing the presence of Ph;PS (6 = 43.34 ppm) along with Ph;PO (8 = 29.32 ppm) and

unreacted PPh; (6 = —5.39 ppm).

T T T T T T T T T T T T
70 65 60 55 50 45 40 35 30 25 20 15

S25



Fe2-P-31R.1.fid
Fe2-P-31P(SR)
1H De-Coupled

150

-5.39

-—140
-—130
:120
;llEI

100

WMMWWWWWWMWWWWWWM ;n

20

T T T T T T T T T T T T T T T T T T T "
35 30 25 20 15 10 5 0 10 -5 -20 -25 -30 35 -40 45 -50 -55  -60 65
f1 {ppm)

Figure S25. 3'P NMR spectrum for the product obtained after reaction of 1a-O, with PPh; at
—40°C showing the presence of only PPh; (6 = —5.39 ppm).
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Figure S26. 3'P NMR spectrum for the product obtained after stirring elemental sulfur (Sg) in
toluene at —40°C overnight, followed by filtration, evaporation of the filtrate and reaction of the
residue with PPh; in CDCl; at RT, showing the presence of PPh; (6 = —5.41 ppm) and Ph;PS (8

=43.17 ppm).
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Figure S27. GC traces for (a) elemental sulfur (Sg, 0.1 mM in CCly) and (b) elemental sulfur

produced upon decomposition of 1a-O, at RT. Also shown is the GCMS data for the elemental

sulfur produced upon decomposition of 1a-O, at RT (c¢).
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Figure S28. 'H NMR of 1a in CD;CN.
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Figure S29. '"H NMR of 2 in CD;CN.
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Figure S30. '"H NMR of 3 in CD;CN.
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Figure S31. '"H NMR of 4 in CD;CN.
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