Chiral dinuclear Ln(III) complexes derived from *S*- and *R*-2-(6-methoxy-2-naphthyl)propionate. Optical and Magnetic Properties.

Berta Casanovas,[a] Saskia Speed,[a] Mohamed Salah El Fallah,[a] Ramon Vicente*[a] Mercè Font-Bardía,[b], Francesco Zinna[c] and Lorenzo Di Bari.[c]

Figure S1. XRD patterns of complexes *R*/*S*-1 (simulated from single-crystal X-ray diffraction) and *R*/*S*-2 (experimental).

Table S1. Crystal data and collection details for the X-ray structure for *R/S*-1, 3 and 4.

	<i>S</i> -1	<i>R-</i> 1	<i>S</i> -3	<i>R</i> -3	S-4	<i>R</i> -4
	$C_{108}H_{94}Eu_2N_4O_{18}$	$C_{108}H_{94}Eu_2N_4O_{18}$	$C_{108}H_{94}N_4O_{18}Tb_2$	$C_{108}H_{94}N_4O_{18}Tb_2\\$	$C_{108}H_{94}Dy_2N_4O_{18}\\$	$C_{108}H_{94}Dy_2N_4O_{18}\\$
Formula	, 3(C ₃ H ₇ NO),					
	H_2O	H_2O	H_2O	H ₂ O	H ₂ O	H_2O
F. W. /						
g∙mol ⁻¹	2277.1	2277.1	2291.04	2291.04	2298.18	2298.18
System	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space	D1	D1	D1	D1	D1	D1
group	11	11	11	11	11	11
a/Å	12.8688(4)	12.8552(5)	12.8145(5)	12.8446(9)	12.8193(4)	12.8163(5)
b/Å	13.2752(4)	13.2618(6)	13.2959(6)	13.2530(11)	13.2636(5)	13.2907(7)
<i>c</i> /Å	15.8294(5)	15.8132(7)	15.8108(7)	15.8329(13)	15.7926(6)	15.8134(8)
$\alpha / ^{\circ}$	90.038(1)	90.122(2)	89.955(2)	90.020(3)	89.848(2)	89.888(2)
β/°	102.534(1)	102.580(2)	77.517(2)	102.538(3)	77.537(1)	77.570(2)
γ/°	95.685(1)	95.812(2)	84.175(2)	95.859(3)	84.055(1)	84.163(2)
V / Å ³	2626.11(14)	2616.8(2)	2616.0(2)	2616.5(4)	2607.30(16)	2616.3(2)
Ζ	1	1	1	1	1	1

T/ K	100	100	100	100	100	100
λ(MoKα)/ Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
$D_{calc}/g \cdot cm^{-3}$	1.44	1.445	1.454	1.454	1.464	1.459
μ(MoKα) / mm ⁻¹	1.259	1.264	1.417	1.417	1.499	1.493
F(000)	1170	1170	1174	1174	1176	1176
Total						
reflections	56397	69466	90676	50103	98017	15029
collected						
Unique						
reflections	21343 (0.031)	21342 (0.042)	21321 (0.030)	20969 (0.028)	21267 (0.044)	15029 (0.027)
$(R_{\rm int})$						
No. of						
refined	1111	1369	1382	1381	1152	1223
parameters						
$R_{1,}wR_2 [I \ge 2\sigma(I)]$	0.0306, 0.0685	0.0294, 0.0624	0.0242, 0.0569	0.0273, 0.0604	0.0338, 0.0811	0.0198, 0.0507
R ₁ ,wR ₂ (all data)	0.0379, 0.0725	0.0387, 0.0664	0.0286, 0.0592	0.0334, 0.0632	0.0413, 0.0851	0.0221, 0.0516
Goodness of fit	1.04	1.06	1.08	1.06	1.03	1.03

Table S2. Distances for shortest intermolecular Ln. Ln interactions of <i>R/S</i> -1, 3 and 4.						
	Interaction	Symmetry	Distance (Å)			
S-1	Eu1Eu2′	1+x,y,z	9.871(1)			
<i>R-</i> 1	Eu1Eu2′	1+x,y,z	9.862(1)			
S-3	Tb1Tb2′	1+x,y,z	9.840(1)			
R-3	Tb1Tb2′	1+x,y,z	9.869(1)			
S-4	Dy1Dy2′	1+x,y,z	9.856(1)			
R-4	Dy1Dy2′	1+x,y,z	9.849(1)			

Table S3. Continuous shape measures (CShM's) using SHAPE software for nonacoordinated compounds R/S-1, 3 and 4.

Polyhedron EP OPY HBPY JTC JCCU CCU JCSAPR CSAPR JTCTPR TCTPR JTDIC HH MFF

	Ln	D_{9h}	C _{8v}	D _{7h}	C _{3v}	C_{4v}	C_{4v}	C_{4v}	C_{4v}	D _{3h}	D _{3h}	C _{3v}	C_{2v}	Cs
S-1	Eu1	34.359	20.463	17.590	15.435	11.708	10.215	2.626	1.577	3.557	2.634	12.167	9.781	1.183
5-1	Eu2	33.197	20.379	17.278	15.156	10.891	9.191	2.720	1.700	3.307	2.833	12.934	8.639	1.538
R-1	Eu1	33.393	20.411	17.111	15.236	10.869	9.170	2.667	1.665	3.314	2.810	13.032	8.620	1.509
<u>N-1</u>	Eu2	34.313	20.619	17.566	15.386	11.746	10.144	2.628	1.577	3.520	2.667	12.089	9.849	1.193
S-3	Tb1	34.431	20.819	17.510	15.513	11.554	10.291	2.533	1.529	3.412	2.655	12.177	9.691	1.151
00	Tb2	33.299	20.504	17.246	15.102	10.805	9.108	2.609	1.613	3.231	2.755	12.902	8.595	1.464
R-3	Tb1	33.307	20.505	17.174	15.090	10.750	9.062	2.608	1.612	3.223	2.738	12.994	8.518	1.452
N 0	Tb2	34.410	20.766	17.511	15.481	11.604	10.284	2.552	1.547	3.438	2.643	12.077	9.710	1.175
S-4	Dy1	34.270	20.787	17.479	15.533	11.549	10.206	2.509	1.511	3.359	2.623	12.119	9.640	1.144
0-1	Dy2	33.475	20.544	17.222	15.268	10.724	9.103	2.590	1.610	3.217	2.744	12.956	8.504	1.432
R-4	Dy1	33.465	20.509	17.140	15.230	10.672	9.021	2.639	1.620	3.245	2.749	12.958	8.470	1.436
14	Dy2	34.409	20.958	17.614	15.487	11.594	10.179	2.461	1.488	3.324	2.637	12.108	9.692	1.154

Table S4. Distances (d; A = acceptor atom, D = donor atom) and angles for supramolecular hydrogen bond interactions in compounds R/S-1, 3 and 4.

	Interaction	d(ODH)/Å	d(HA)/Å	d(ODA)/Å	Angle/°	(')
C 1	O1WH1W O11	0.90(2)	2.06(3)	2.921(9)	160(8)	-1+x,1+y,z
5-1	O1WH2W O1D	0.90(4)	2.01(5)	2.860(10)	158(6)	-
D 1	O1WH1W O9	0.93(3)	1.98(3)	2.905(8)	170(8)	-
K-1	O1WH2W O1D	0.94(4)	1.92(4)	2.856(8)	176(12)	-
6.2	O1WH1W O11	0.93(4)	2.03(4)	2.914(8)	159(9)	-
5-3	O1WH2W O1D	0.93(5)	1.93(5)	2.861(8)	173(5)	1+x,y,z
D 2	O1WH1W O9	0.94(4)	1.99(4)	2.910(8)	165(5)	x,-1+y,z
К-3	O1WH2W O1D	0.94(5)	2.02(5)	2.872(8)	150(7)	-
C 1	O1WH1W O11	0.95(5)	1.99(6)	2.907(11)	162(10)	1+x,-1+y,z
5-4	O1WH2W O1D	0.95(4)	1.94(5)	2.866(11)	167(11)	1+x,y,z
РЛ	O1WH1W O9	0.94(3)	1.98(4)	2.907(8)	167(6)	-
N-4	O1WH2W O1D	0.94(5)	1.95(5)	2.877(8)	170(10)	x,-1+y,z

Figure S2. Supramolecular hydrogen bonds (represented in blue) in compounds *R*-3 (left) and *S*-3 (right).

Figure S3. Supramolecular arrangement representation in compound *S*-3 on the [100] direction. π -stacking interactions are represented in blue.

Table S5. Symmetry operations,	distances (A) and	slippages (A) from	m intermolecular π - π
stacking interactions for compound	ls <i>R/S-1</i> , 3 and 4. Ce	entroids Cg(2) and	Cg(17) correspond to
phen ligands containing N1 and N	V2 atoms, meanwhil	e centroids $Cg(4)$	and $Cg(18)$ stand for
phen ligands containing N3 and N4	atoms.	•••	

Compound	Contact	Symmetry code (')	d(Cg-Cg)	Slippage
 C 1	Cg(2)-Cg(18)'	1+x,y,z	3.617(4)	1.437
5-1	Cg(4)-Cg(17)'	-1+x,y,z	3.710(5)	1.522
P 1	Cg(2)-Cg(18)'	1+x,y,z	3.713(4)	1.538
N-1	Cg(4)-Cg(17)'	-1+x,y,z	3.610(4)	1.417
S-3	Cg(2)-Cg(18)'	1+x,y,z	3.616(4)	1.427

	Cg(4)-Cg(17)'	-1+x,y,z	3.713(4)	1.527
R_3	Cg(2)-Cg(18)'	1+x,y,z	3.713(4)	1.522
K-5	Cg(4)-Cg(17)'	-1+x,y,z	3.611(4)	1.425
S 1	Cg(2)-Cg(18)'	1+x,y,z	3.608(5)	1.43
3-4	Cg(4)-Cg(17)'	-1+x,y,z	3.713(6)	1.54
R_4	Cg(2)-Cg(18)'	1+x,y,z	3.718(4)	1.558
N-4	Cg(4)-Cg(17)'	-1+x,y,z	3.608(4)	1.428

Table S6. Relaxation parameters values for the best fit of χ_M ' and χ_M ' vs. frequency using generalised Debye model for compound *R*-4.

T / K	χ _s / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	τ/s	α
3.2	0.78	6.20	3.14E-04	0.35
3.0	0.41	6.58	3.48E-04	0.38
2.8	0.33	6.83	4.16E-04	0.38
2.6	0.31	7.05	5.02E-04	0.38
2.4	0.28	7.32	6.10E-04	0.39
2.2	0.25	7.71	7.57E-04	0.39
2.0	0.33	8.44	9.90E-04	0.38
1.9	0.40	9.17	1.21E-03	0.37

Figure S4. Dependence for S-4 of the out-of-phase susceptibility with the temperature at different static fields at 10 and 1000 Hz.

Figure S5. Emission spectrum at $\lambda_{ex} = 300$ nm of complex S-2 at room temperature (black line) and 77 K (red line) in solid state.

Figure S6. Emission spectrum at $\lambda_{ex} = 300$ nm of the ligand S-naproxen.

Figure S7. Emission spectrum at $\lambda_{ex} = 300$ nm of the ligand 1,10-phenanthroline.