Supplementary Material

Lewis acid activating CO₂ reduction over Ni modified Ni-Ge hydroxide driven by

visible-infrared light

Zhenyu Xin,^{‡a} Lei Lu,^{‡a} Bing Wang,^b Xiaohui Wang,^a Kai Zhu,^c Zhe Xu,^a Zhentao Yu,^a Shicheng Yan,^{*a} and Zhigang Zou^{a,b}

^{a.} Eco-materials and Renewable Energy Research Center (ERERC),

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093 (P. R. China)

^{b.} Jiangsu Province Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing, Jiangsu 210093 (P. R. China)

^{c.} School of Information Science and Engineering, Nanjing University Jinling College, No. 8 Xuefu Road, Nanjing, Jiangsu 210089, P. R. China

*Corresponding author E-mail address: yscfei@nju.edu.cn (Shicheng Yan)

‡These authors contributed equally to this work.

Fig. S1. Radiation spectrum of 300 W Xe lamp used in this study as light source.

Fig. S2. XRD patterns of $Ni_3Ge_2O_5(OH)_4$ and $Ni_3Ge_2O_5(OH)_4$ after $NaBH_4$ solution treatment.

Fig. S3. EDS analysis of the (a) $Ni_3Ge_2O_5(OH)_4$ and (b) $Ni/Ni_3Ge_2O_5(OH)_4$. For $Ni_3Ge_2O_5(OH)_4$, n(Ni) / n(Ge) = 1.02 / 0.64 = 1.59. For Ni/Ni_3Ge_2O_5(OH)_4, n(Ni) / n(Ge) = 2.47 / 1.40 = 1.76. The theoretical atom ratio of Ni:Ge in the $Ni_3Ge_2O_5(OH)_4$ and $Ni/Ni_3Ge_2O_5(OH)_4$ are 1.50 and $n(Ni^{2+}) + n(Ni^{0})$

$$\frac{2}{3}n(Ni^{2+})$$

Fig. S4. HR-TEM lattice image of $Ni_3Ge_2O_5(OH)_4$ after annealing treatment for 1 h at 673 K under flowing N_2 .

Fig. S5. HR-TEM image of Ni nanoparticles. Ni nanoparticles were prepared by direct reduction of $Ni(NO_3)_2$ by $NaBH_4$ solution at 273 K.

Fig. S6. (a) UV-vis adsorption spectra for Ni nanoparticles and (b) Ni+Ni₃Ge₂O₅(OH)₄. Ni nanoparticles were prepared by direct reduction of Ni(NO₃)₂ by NaBH₄ at 273K. Ni+Ni₃Ge₂O₅(OH)₄ was prepared by mechanical grinding of Ni nanoparticles and Ni₃Ge₂O₅(OH)₄ according to the mole ratio of Ni²⁺ to Ni⁰ in Ni/Ni₃Ge₂O₅(OH)₄.

Fig. S7. (a) XRD pattern and (b) Ge 3d XPS spectrum of $Ni_3Ge_2O_5(OH)_4$ with high crystalline. $Ni_3Ge_2O_5(OH)_4$ with high crystalline was prepared by hydrothermal method (453 K for 12h).

Fig. S8. Crystal structure of $Ni_3Ge_2O_5(OH)_4$.

Fig. S9. Quantitative FT-IR spectrum of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄.

Fig. S10. Valence-band XPS spectra of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄.

Fig. S11. Mott-Schottky plots for (a) $Ni/Ni_3Ge_2O_5(OH)_4$ and (b) $Ni_3Ge_2O_5(OH)_4$ in 0.5 M Na_2SO_4 aqueous solution with frequencies of 200 Hz, 500 Hz and 1000 Hz.

Fig. S12. (a) Specific surface area (b) and CO_2 adsorption quantity for the Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄, respectively.

Fig. S13. (a) Steady-state photoluminescence spectra of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ under the excitation of 470 nm. (b) PL decay traces of Ni/Ni₃Ge₂O₅(OH)₄ and Ni₃Ge₂O₅(OH)₄ and their corresponding fluorescence lifetimes under the excitation of 470 nm. The inset in Figure S11a showed the enlarged PL spectrum for Ni/Ni₃Ge₂O₅(OH)₄.

Fig. S14. CO and CH₄ yields for Ni/Ni₃Ge₂O₅(OH)₄ under infrared light irradiation for 6 h.

Fig. S15. (a) Ni 2p XPS spectra for Ni/Ni₃Ge₂O₅(OH)₄ after reaction. (b) Ni 2p XPS spectra for Ni/Ni₃Ge₂O₅(OH)₄+Vac.6h and Ni/Ni₃Ge₂O₅(OH)₄+Vac.6h+CO₂ ads.6h.

Fig. S16. (a) Ge 3d and (b) O 1s XPS spectra for $Ni_3Ge_2O_5(OH)_4$ after reaction. (c) Ge 3d and (d) O 1s XPS spectra for $Ni_3Ge_2O_5(OH)_4$ after vacuum irradiation for 6 h (denoted as $Ni_3Ge_2O_5(OH)_4$ +Vac.6h) and for $Ni_3Ge_2O_5(OH)_4$ +Vac.6h after CO₂ adsorption for 6 h (denoted as $Ni_3Ge_2O_5(OH)_4$ +Vac.6h+CO₂ ads.6h).

Fig. S17. (a) Ni 2p XPS spectra for $Ni_3Ge_2O_5(OH)_4$ after reaction. (b) Ni 2p XPS spectra for $Ni_3Ge_2O_5(OH)_4$ +Vac.6h and $Ni_3Ge_2O_5(OH)_4$ +Vac.6h+CO₂ ads.6h.

 $\label{eq:Fig.S18.FT-IR} \textbf{FT-IR} \ pattern \ for \ Ni_3Ge_2O_5(OH)_4 + Vac.6h \ and \ Ni_3Ge_2O_5(OH)_4 + Vac.6h + CO_2 \ ads.6h.$

Fig. S19. FT-IR spectra of Ni/Ni₃Ge₂O₅(OH)₄+Vac.6h and Ni/Ni₃Ge₂O₅(OH)₄+Vac.6h after H₂O adsorption for 6h (denoted as Ni/Ni₃Ge₂O₅(OH)₄+Vac.6h+H₂O ads.6h).

Fig. S20. (a) FT-IR pattern of Ni/Ni₃Ge₂O₅(OH)₄, Ni/Ni₃Ge₂O₅(OH)₄ after reaction, Ni/Ni₃Ge₂O₅(OH)₄+Vac.6h. (b) FT-IR pattern of Ni₃Ge₂O₅(OH)₄, Ni₃Ge₂O₅(OH)₄ after reaction, Ni₃Ge₂O₅(OH)₄+Vac.6h.

Table S1. The gas yield of O_2 of $Ni/Ni_3Ge_2O_5(OH)_4$ and $Ni_3Ge_2O_5(OH)_4$

Photocatalysts	Condition	O ₂ yield (µmol g _{cat.} ⁻¹)
Ni/Ni ₃ Ge ₂ O ₅ (OH) ₄	Visible-light irradiation for 1h	1472
Ni ₃ Ge ₂ O ₅ (OH) ₄	under vacuum	37
Ni/Ni ₃ Ge ₂ O ₅ (OH) ₄	Visible-light irradiation for 6h	1692
Ni ₃ Ge ₂ O ₅ (OH) ₄	under vacuum	82
Ni/Ni ₃ Ge ₂ O ₅ (OH) ₄	Visible-light CO ₂ reduction	897
Ni ₃ Ge ₂ O ₅ (OH) ₄	for 1h	14