Supporting Information for

Variable Oxidation State Sulfur-Bridged Bithiazole Ligands Tune the Electronic Properties of Ruthenium(II) and Copper(I) Complexes

Elise Caron, Christopher M. Brown, Duane Hean and Michael O. Wolf*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1.

‡ These authors contributed equally to this work

TABLE of CONTENTS

NMR SPECTRA	
Ruthenium(II) Complexes	
Copper(I) Complexes	
X-RAY CRYSTALLOGRAPHY	
SPECTROSCOPIC DATA	
Ruthenium(II) Complexes	42
Absorption Spectroscopy	

Photoluminescence Spectroscopy	44
Electrochemical Data	47
Copper(I) Complexes	53
Absorption Spectroscopy	
Photoluminescence Spectroscopy	
Electrochemical Data	
REFERENCES	

NMR SPECTRA

Ruthenium(II) Complexes

Figure S1. ¹H NMR spectra of pro-ligands and their respective complexes in CD₃CN at 298 K (400 MHz). (a) tzS (**5**) and $[Ru(tzS)_3][PF_6]_2$ (**7**); (b) tzSO₂ (**6**) and $[Ru(tzSO_2)_2(CH_3CN)_2]^{2+}$ (**8**).

Figure S2. ¹H NMR spectra of pro-ligands and their respective complexes in CD_2Cl_2 at 298 K (400 MHz). (a) tzS (**5**) and $[Ru(bpy)_2(tzS)]^{2+}$ (**9**); (b) tzSO₂ (**6**) and $[Ru(bpy)_2(tzSO_2)]^{2+}$ (**10**).

Figure S3. ¹H NMR spectra of pro-ligands and their respective complexes in CD_2Cl_2 at 298 K (400 MHz). (a) tzS (5) and $[Ru(phen)_2(tzS)]^{2+}(11)$; (b) tzSO₂ (6) and $[Ru(phen)_2(tzSO_2)]^{2+}(12)$.

Figure S4. (a) ¹H and (b) COSY NMR spectra of $[Ru(bpy)_2(tzS)]^{2+}$ (9) in CD₂Cl₂ at 298 K (400 MHz).

Figure S5. (a) ¹H and (b) COSY NMR spectra of $[Ru(bpy)_2(tzSO_2)]^{2+}$ (10) in CD₂Cl₂ at 298 K (400 MHz).

Figure S6. (a) ¹H and (b) COSY NMR spectra of $[Ru(phen)_2(tzS)]^{2+}(11)$ in CD₂Cl₂ at 298 K (400 MHz).

Figure S7. (a) ¹H and (b) COSY NMR spectra of $[Ru(phen)_2(tzSO_2)]^{2+}$ (12) in CD₂Cl₂ at 298 K (400 MHz).

Figure S8. ¹H NMR photoejection experiments of $[Ru(bpy)_2(tzSO_2)]^{2+}(10)$ at 298 K (400 MHz). (a) CD_2Cl_2 ; (b) $CD_2Cl_2 + 10$ equiv. of CH_3CN in the dark (t = 0 min); (c) $CD_2Cl_2 + 10$ equiv. of CH_3CN in the dark (t = 20 min); (d) $CD_2Cl_2 + 10$ equiv. of CH_3CN in the sunlight (t = 2 min); (e) $CD_2Cl_2 + 10$ equiv. of CH_3CN under UV light (t = 15 min); (f) $CD_2Cl_2 + 10$ equiv. of CH_3CN under visible light (t = 15 min). *t = time after addition of CH_3CN .

Figure S9. NOESY NMR spectra of (a) [Ru(bpy)₂(tzS)]²⁺ (9) and (b) [Ru(bpy)₂(tzSO₂)]²⁺ (10) in CD₃CN at 298 K (400 MHz).

Copper(I) Complexes

Figure S10. (a) ¹H; (b) ¹³C{¹H}; and (c) ³¹P{¹H} NMR spectra of [Cu(POP)(tzS)]⁺ (**13**) performed in CD₃CN at 298 K (400 MHz).

Figure S11. (a) ¹H; (b) ¹³C{¹H}; and (c) ³¹P{¹H} NMR spectra of $[Cu(POP)(tzSO_2)]^+$ (14) in CD_2Cl_2 at 298 K (400 MHz).

Figure S12. (a) ¹H; (b) ¹³C{¹H}; and (c) ³¹P{¹H} NMR spectra of [(POP)Cu(hbtz)Cu(POP)]²⁺ (**15**) in CD₃CN at 298 K (400 MHz).

X-RAY CRYSTALLOGRAPHY

	tzS	tzSO ₂	$[Ru(tzS)_3][PF_6]_2$	$[Ru(tzSO_2)_2(MeCN)_2][PF_6]$	$[Ru(bpy)_2(tzS)][PF_6]_2$
	(5)	(6)	(7)	(8)	(9)
Empirical formula	$C_6H_4N_2S_3$	$C_6H_4N_2O_2S_3$	$C_{20}H_{16}Cl_4F_{12}N_6P_2$	$C_{16}H_{14}F_{12}N_6O_4P_2RuS_6$	$C_{26}H_{20}F_{12}N_6P_2RuS_3$
			RuS ₉		
Formula weight	200.29	232.29	1161.74	937.70	903.67
Temperature/K	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	monoclinic	orthorhombic	triclinic
Space group	Cc	$P2_1/n$	$P2_1/c$	Pbca	P-1
a/Å	5.1947(7)	5.6977(6)	20.740(2)	15.7488(10)	9.9194(10)
b/Å	13.717(2)	21.813(2)	11.2518(11)	10.2530(6)	12.2967(12)
c/Å	10.9339(16)	7.5732(11)	19.1696(19)	18.1104(11)	15.4919(16)
α/°	90	90	90	90	83.535(3)
β/°	93.100(5)	111.635(5)	110.755(5)	90	78.175(2)
γ/°	90	90	90	90	71.471(2)
Volume/Å ³	778.0(2)	874.93(19)	4183.1(7)	2924.3(3)	1751.4(3)
Z	4	4	4	4	2
$\rho_{calc}g/cm^3$	1.710	1.763	1.845	2.130	1.714
µ/mm ⁻¹	0.878	0.810	1.237	1.191	0.811
F(000)	408.0	472.0	2288.0	1848.0	896.0
Crystal size/mm ³	0.499 × 0.401	0.466 ×	0.12 $ imes$ 0.117 $ imes$	$0.333 \times 0.304 \times 0.09$	$0.123 \times 0.101 \times 0.09$
	× 0.201	0.301 imes 0.01	0.101		
Radiation	MoKa (λ =	MoKa (λ =	ΜοΚα (λ =	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
	0.71073)	0.71073)	0.71073)		
2Θ range for data	5.94 to 56.66	6.082 to	4.186 to 52.926	4.498 to 56.65	3.498 to 56.64
collection/°		56.458			
Index ranges	$-6 \le h \le 6, -18$	-7 \leq h \leq 7, -	-26 \leq h \leq 25, -14 \leq	$\text{-}21 \leq h \leq 16, \text{-}13 \leq k \leq 12, \text{-}24$	$-13 \le h \le 13, -16 \le k \le 16,$
	\leq k \leq 17, -14 \leq	$26 \leq k \leq 28,$	$k \le 9, -23 \le l \le 23$	$\leq l \leq 24$	$-11 \le 1 \le 20$
	$l \le 14$	$-10 \le l \le 10$			

Table S1. Selected crystal data and structure refinement for compounds 5–9.

Reflections	6801	8655	20380	15144	30867
collected					
Independent	1822 [R _{int} =	2147 [R _{int} =	8468 [R _{int} =	3639 [$R_{int} = 0.0424$, $R_{sigma} =$	8537 [$R_{int} = 0.0240, R_{sigma}$
reflections	$0.1098,\ R_{sigma}$	0.0163,	0.0402, R_{sigma} =	0.0273]	= 0.0273]
	= 0.0523]	R _{sigma} =	0.0648]		
		0.0131]			
Data/restraints/para	1822/2/100	2147/0/118	8468/0/487	3639/0/215	8537/0/451
meters					
Goodness-of-fit on	1.056	1.085	1.020	1.041	1.031
F^2					
Final R indexes	$R_1 = 0.0344,$	$R_1 = 0.0214,$	$R_1 = 0.0667, wR_2$	$R_1 = 0.0228, wR_2 = 0.0602$	$R_1 = 0.0357, wR_2 = 0.0865$
[I>=2σ (I)]	$wR_2 = 0.0878$	$wR_2 =$	= 0.1639		
		0.0565			
Final R indexes [all	$R_1 = 0.0344,$	$R_1 = 0.0218,$	$R_1 = 0.0907, wR_2$	$R_1 = 0.0271, wR_2 = 0.0620$	$R_1 = 0.0443, wR_2 = 0.0910$
data]	$wR_2 = 0.0879$	$wR_2 =$	= 0.1772		
		0.0567			
Largest diff.	0.75/-0.46	0.42/-0.41	2.02/-1.17	0.94/-1.04	1.19/-0.77
peak/hole / e Å-3	peak/hole / e Å- ³				
Flack parameter	-0.08(12)				

	[Ru(phen) ₂ (tzSO ₂)]	[Cu(POP)tzS][BF ₄] ₂	[Cu(POP)tzSO ₂][[Cu(POP)(hbtz)][BF ₄]
	$[PF_6]_2$ (12)	(13)	BF ₄](14)	(15)
Empirical formula	$C_{30}H_{20}F_{12}N_6O_2P_2RuS$	$C_{43.49}H_{35.63}BCl_{0.34}CuF_4N_2$	$C_{43}H_{34}BCl_2CuF_4N_2$	$C_{98.02}H_{104.06}B_{2.04}Cu_2F_{8.16}$
	3	$O_{1,33}P_2S_3$	$O_3P_2S_3$	$N_2O_4P_4S_2$
Formula weight	983.71	928.05	1006.09	1866.30
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	orthorhombic	monoclinic	monoclinic	triclinic
Space group	Pbca	$P2_1/n$	$P2_1/n$	P-1
a/Å	12.8317(8)	13.0385(9)	13.2844(6)	12.6003(14)
b/Å	15.2760(10)	44.590(3)	12.9331(6)	13.8878(15)
c/Å	36.552(2)	14.4382(8)	25.3545(11)	15.3231(16)
α/°	90	90	90	72.305(4)
β/°	90	94.266(2)	93.727(2)	71.948(4)
γ/°	90	90	90	66.698(4)
Volume/Å ³	7164.9(8)	8370.9(9)	4346.9(3)	2290.4(4)
Ζ	8	8	4	1
$\rho_{calc}g/cm^3$	1.824	1.473	1.537	1.353
µ/mm ⁻¹	0.805	0.826	0.903	0.649
F(000)	3904.0	3800.0	2048.0	972.0
Crystal size/mm ³	$0.123 \times 0.101 \times 0.05$	$0.384 \times 0.111 \times 0.02$	0.409 $ imes$ 0.208 $ imes$	$0.306 \times 0.257 \times 0.234$
			0.105	
Radiation	MoKα (λ = 0.71073)	MoKa ($\lambda = 0.71073$)	ΜοΚα (λ =	MoKa ($\lambda = 0.71073$)
			0.71073)	
2Θ range for data	3.878 to 53.094	1.826 to 52.756	3.22 to 55.998	3.866 to 56.696
collection/°				
Index ranges	$\textbf{-16} \leq h \leq 16, \textbf{-13} \leq k$	$-16 \le h \le 16, -47 \le k \le 55,$	$-14 \le h \le 13, -14 \le k$	$-15 \le h \le 16, -18 \le k \le 17,$
	\leq 19, -45 \leq 1 \leq 41	$-11 \le 1 \le 18$	$\leq 11, -25 \leq 1 \leq 28$	$-20 \le 1 \le 20$
Reflections	31751	68044	30265	30305
collected				

 Table S2. Selected crystal data and structure refinement for compounds 12–15.

Independent	7421 [$R_{int} = 0.0390$,	17006 [$R_{int} = 0.0315$,	10029 [R _{int} =	11409 $[R_{int} = 0.0201,$
reflections	$R_{sigma} = 0.0413$]	$R_{sigma} = 0.0320$]	$0.0215, R_{sigma} =$	$R_{sigma} = 0.0261$]
			0.0212]	
Data/restraints/para	7421/609/542	17006/3/1121	10029/52/560	11409/794/696
meters				
Goodness-of-fit on	1.098	1.057	1.046	1.058
F^2				
Final R indexes	$R_1 = 0.0709, wR_2 =$	$R_1 = 0.0352, wR_2 = 0.0846$	$R_1 = 0.0278, wR_2 =$	$R_1 = 0.0388, wR_2 =$
[I>=2σ (I)]	0.1720		0.0701	0.1049
Final R indexes [all	$R_1 = 0.0824, wR_2 =$	$R_1 = 0.0442, wR_2 = 0.0886$	$R_1 = 0.0306, wR_2 =$	$R_1 = 0.0463, WR_2 =$
data]	0.1786		0.0716	0.1110
Largest diff.	3.53/-1.23	0.66/-0.73	0.66/-0.50	0.62/-0.72
peak/hole / e Å-3				

 Table S3. Selected bond angles for pro-ligands tzS (5) and tzSO2 (6).

tzS (5)	Bond angle (°)	$tzSO_2(6)$	Bond angle (°)
C1-S1-C4	101.66(14)	C1-S1-C4	104.62(5)

-	$[Ru(tzS)_3][PF_6]_2(7)$	Length (Å)	$[Ru(tzSO_2)_2(MeCN)_2][PF_6]$ (8)	Length (Å)
-	Ru1-N1	2.087(5)	Ru1-N1	2.0766(14)
	Ru1-N2	2.092(5)	Ru1-N1 ¹	2.0766(14)
	Ru1-N3	2.078(5)	Ru1-N2	2.0811(14)
	Ru1-N4	2.088(5)	Ru1-N2 ¹	2.0811(14)
	Ru1-N5	2.099(5)	Ru1-N3	2.0206(14)
	Ru1-N6	2.127(5)	Ru1-N3 ¹	2.0206(14)
	S1-C3	1.754(6)	S1-C3	1.7575(17)
	S1-C4	1.747(7)	S1-C4	1.7621(17)
	S4-C9	1.756(7)		
	S4-C10	1.748(8)		
	S4-C9	1.756(7)		
	S7-C15	1.755(7)		
	S7-C16	1.750(7)		
-	$[Ru(bpy)_2(tzS)][PF_6]_2$ (9)	Length (Å)	$[Ru(phen)_2(tzSO_2)][PF_6]_2$ (12)	Length (Å)
-	Ru1-N1	2.085(2)	Ru1-N1	2.104(5)
	Ru1-N2	2.094(2)	Ru1-N2	2.105(5)
	Ru1-N3	2.070(2)	Ru1-N3	2.053(5)
	Ru1-N4	2.049(2)	Ru1-N4	2.082(5)
	Ru1-N5	2.057(2)	Ru1-N5	2.064(5)
	Ru1-N6	2.074(2)	Ru1-N6	2.070(5)
	S1-C3	1.758(3)	S1-C3	1.765(6)
	S1-C4	1.759(3)	S1-C4	1.753(6)

Table S4. Selected bond lengths for compounds $[Ru(tzS)_3][PF_6]_2$ (7), $[Ru(tzSO_2)_2(MeCN)_2][PF_6]$ (8), $[Ru(bpy)_2(tzS)][PF_6]_2$ (9) and $[Ru(phen)_2(tzSO_2)][PF_6]_2$ (12).

	$[Ru(tzS)_3][PF_6]_2(7)$	Angle (°)	$[Ru(tzSO_2)_2(MeCN)_2][PF_6]$ (8)	Angle (°)
	N1-Ru1-N4	89.30(19)	N1-Ru1-N2	87.56(5)
	N1-Ru1-N2	90.6(2)	N1-Ru1-N2 ¹	92.44(5)
	N1-Ru1-N5	94.0(2)	N1 ¹ -Ru1-N2 ¹	87.56(5)
	N1-Ru1-N6	88.4(2)	N1 ¹ -Ru1-N2	92.44(5)
	N2-Ru1-N5	175.1(2)	N3 ¹ -Ru1-N2 ¹	86.41(5)
	N2-Ru1-N6	90.5(2)	N3 ¹ -Ru1-N2	93.59(5)
	N3-Ru1-N4	89.85(19)	N3-Ru1-N2	86.41(5)
	N3-Ru1-N2	91.4(2)	N3-Ru1-N2 ¹	93.59(5)
	N3-Ru1-N5	84.0(2)	N31-Ru1-N1	90.91(5)
	N3-Ru1-N1	177.8(2)	N3-Ru1-N1	89.09(5)
	N3-Ru1-N6	92.5(2)	N3-Ru1-N1 ¹	90.91(5)
	N5-Ru1-N6	91.6(2)	N3 ¹ -Ru1-N1 ¹	89.09(5)
	C4-S1-C3	101.2(3)	C3-S1-C4	102.05(8)
	C10-S4-C9	99.9(3)		
	C16-87-C15	105.1(3)		
_	$[Ru(bpy)_2(tzS)][PF_6]_2$ (9)	Angle (°)	$[Ru(phen)_2(tzSO_2)][PF_6]_2$ (12)	Angle (°)
_	N1-Ru1-N2	88.41(8)	N1-Ru1-N2	90.75(18)
	N3-Ru1-N1	93.31(9)	N3-Ru1-N6	91.47(19)
	N3-Ru1-N2	85.03(8)	N3-Ru1-N5	90.08(19)
	N4-Ru1-N2	93.68(8)	N3-Ru1-N2	88.60(18)
	N4-Ru1-N3	79.64(9)	N3-Ru1-N4	79.71(19)
	N4-Ru1-N5	88.22(8)	N4-Ru1-N1	99.93(19)
	N4-Ru1-N6	94.84(8)	N4-Ru1-N2	90.11(18)
	N5-Ru1-N1	90.16(8)	N5-Ru1-N1	90.61(19)
	N5-Ru1-N3	98.77(8)	N5-Ru1-N6	80.13(19)
	N5-Ru1-N6	78.78(8)	N5-Ru1-N4	95.29(19)

Table S5. Selected bond angles for compounds $[Ru(tzS)_3][PF_6]_2$ (7), $[Ru(tzSO_2)_2(MeCN)_2][PF_6]$ (8), $[Ru(bpy)_2(tzS)][PF_6]_2$ (9) and $[Ru(phen)_2(tzSO_2)][PF_6]_2$ (12).

N6-Ru1-N1	92.09(8)	N6-Ru1-N1	88.94(18)
N6-Ru1-N2	97.55(8)	N6-Ru1-N2	94.18(18)
C3-S1-C4	99.15(12)	C4-S1-C3	103.3(3)

Table S6. Selected bond lengths for compounds [Cu(POP)tzS][BF₄]₂ (13), [Cu(POP)tzSO₂][BF₄](14) and [Cu(POP)(hbtz)][BF₄] (15).

[Cu(POP)tzS][BF ₄] ₂ (13)	Length (Å)	$[Cu(POP)tzSO_2][BF_4](14)$	Length (Å)
Cu1A-P1A	2.2555(6)	Cu1-N1	2.1229(18)
Cu1A-P2A	2.2418(6)	Cu1-N2	2.0867(18)
Cu1A-N1A	2.0489(18)	S1-O2	1.4297(16)
Cu1A-N2A	2.0548(18)	S1-O3	1.4367(16)
Cu1B-P1B	2.2531(6)	Cu1-P1	2.2352(6)
Cu1B-P2B	2.2827(6)	Cu1-P2	2.2741(6)
Cu1B-N1B	2.1007(17)	S1-C3	1.762(4)
Cu1B-N2B	2.0810(18)	S1-C4	1.761(4)
S1A-C3A	1.757(2)		
S1A-C4A	1.753(3)		
S1B-C3B	1.765(2)		
S1B-C4B	1.763(2)		
[Cu(POP)(hbtz)][BF ₄] (15)	Length (Å)		
Cu1-N1	1.9764(16)		
Cu1-P1	2.2343(5)		
Cu1-P2	2.2247(5)		

Table S7. Selected bond angles for compounds $[Cu(POP)tzS][BF_4]_2$ (13), $[Cu(POP)tzSO_2][BF_4]$ (14) and $[Cu(POP)(hbtz)][BF_4]$ (15).

$[Cu(POP)tzS][BF_4]_2(13)$	Angle (°)	$[Cu(POP)tzSO_2][BF_4](14)$	Angle (°)
P2A-Cu1A-P1A	114.43(2)	N1-Cu1-P1	127.88(9)
N1A-Cu1A-P1A	111.54(5)	N1-Cu1-P2	102.00(9)
N1A-Cu1A-P2A	111.47(5)	N2-Cu1-N1	93.50(12)
N1A-Cu1A-N2A	93.40(7)	N2-Cu1-P1	110.60(9)
N2A-Cu1A-P1A	112.70(5)	N2-Cu1-P2	108.60(9)
N2A-Cu1A-P2A	111.49(5)	P1-Cu1-P2	111.97(4)
C4A-S1A-C3A	102.98(11)	C4-S1-C3	101.17(18)
P1B-Cu1B-P2B	111.74(2)		
N1B-Cu1B-P1B	112.69(5)		
N1B-Cu1B-P2B	107.01(5)		
N2B-Cu1B-P1B	121.96(5)		
N2B-Cu1B-P2B	109.87(5)		
N2B-Cu1B-N1B	91.13(7)		
C4B-S1B-C3B	98.69(10)		
[Cu(POP)(hbtz)][BF ₄] (15)	Angle (°)		
P2-Cu1-P1	119.924(19)		
N1-Cu1-P1	118.33(5)		
N1-Cu1-P2	119.10(5)		

CRYSTALLOGRAPHIC DETAILS AND ORTEP DIAGRAMS

Pro-Ligands

tzS (5)

A colorless rectangular crystal of $C_6H_4N_2S_3$, having approximate dimensions of $0.50 \times 0.40 \times 0.20$ mm was mounted on a nylon loop. The data were collected at a temperature of $-183.0 + 0.1^{\circ}C$ to a maximum 2 Θ value of 56.6°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 6801 reflections that were collected, 1822 were unique (Rint = 0.11); equivalent reflections were merged. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 6801 reflections and 100 variable parameters and converged. All refinements were performed using the ShelXL⁶ via the OLEX2⁷ interface.

Figure S13. Asymmetric unit of 5 with thermal ellipsoids drawn are at 50 % probability level.

Figure S14. Packing diagram of 5 viewed along the b-axis. Hydrogen atoms are excluded for clarity.

$tzSO_2(6)$

A colorless rectangular crystal of $C_6H_4N_2O_2S_3$, having approximate dimensions of $0.47 \times 0.30 \times 0.01$ mm was mounted on a nylon loop. The data were collected at a temperature of $-183.0 + 0.1^{\circ}C$ to a maximum 2 Θ value of 56.5°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 8655 reflections that were collected, 2147 were unique (Rint = 0.016); equivalent reflections were merged. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 8655 reflections and 118 variable parameters and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON³.

Figure S15. Asymmetric unit of 6 with thermal ellipsoids drawn are at 50 % probability level.

Figure S16. Packing diagram of 6 viewed along the a-axis. Hydrogen atoms are excluded for clarity.

Ruthenium(II) Complexes

$[Ru(tzS)_3][PF_6]_2(7)$

A yellow plate shaped crystal of $C_{18}H_{12}F_{12}N_6P_2RuS_9$ -2CH₂Cl₂, having approximate dimensions of $0.12 \times 0.12 \times 0.10$ mm was mounted on a nylon loop. The data were collected at a temperature of $-183.0 + 0.1^{\circ}$ C to a maximum 2 Θ value of 52.9°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 20380 reflections that were collected, 8468 were unique (Rint = 0.040); equivalent reflections were merged. The material crystallized with two molecules of CH₂Cl₂ in the asymmetric unit. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 20380 reflections and 487 variable parameters

and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S17. Asymmetric unit of 7 with thermal ellipsoids drawn are at 50 % probability level.

Figure S18. Packing diagram of 7 viewed along the b-axis. Hydrogen atoms are excluded for clarity.

$[Ru(tzSO_2)_2(MeCN)_2][PF_6]$ (8)

An orange plate shaped crystal of $C_{16}H_{14}F_{12}N_6O_4P_2RuS_6$, having approximate dimensions of 0.33 × 0.30 × 0.09 mm was mounted on a glass fiber. The data were collected at a temperature of -183.0 + 0.1°C to a maximum 2 Θ value of 56.7°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 15144 reflections that were collected, 3639 were unique (Rint = 0.042); equivalent reflections were merged. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F2 was based on 15144 reflections and 215 variable parameters and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S19. Asymmetric unit of 8 with thermal ellipsoids drawn are at 50 % probability level.

Figure S20. Packing diagram of 8 viewed along the b-axis. Hydrogen atoms are excluded for clarity.

$[Ru(bpy)_2(tzS)][PF_6]_2$ (9)

An orange prism shaped crystal of $C_{26}H_{20}F_{12}N_6P_2RuS_3$, having approximate dimensions of 0.123 × 0.101 × 0.09 mm was mounted on a nylon loop. The data were collected at a temperature of - 183.0 + 0.1°C to a maximum 2 Θ value of 56.6°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 30867 reflections that were collected, 8537 were unique (Rint = 0.024); equivalent reflections were merged. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 30867 reflections and 451 variable parameters and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S21. Asymmetric unit of 9 with thermal ellipsoids drawn are at 50 % probability level.

Figure S22. Packing diagram of 9 viewed along the a-axis. Hydrogen atoms are excluded for clarity.

$[Ru(phen)_2(tzSO_2)][PF_6]_2$ (12)

An orange plate shaped crystal of $C_{30}H_{20}F_{12}N_6O_2P_2RuS_3$, having approximate dimensions of 0.12 × 0.10 × 0.05 mm was mounted on a nylon loop. The data were collected at a temperature of - 183.0 + 0.1°C to a maximum 2 Θ value of 53.1°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 31751 reflections that were collected, 7421 were unique (Rint = 0.039); equivalent reflections were merged. One of the PF₆ anions are disordered and was modeled in two orientations. A series of SADI commands were used to ensure reasonable geometries and displacement parameters. A list of the constraints and restraints used in this refinement can be found within the CIF. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 31751 reflections and 569 variable parameters and converged. All

refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S23. Asymmetric unit of 12 with thermal ellipsoids drawn are at 50 % probability level.

Figure S24. Packing diagram of **12** viewed along the a-axis. Minor disordered fragments are shown as points. Hydrogen atoms are excluded for clarity.

Copper(I) Complexes

$[Cu(POP)tzS][BF_4]_2(13)$

A yellow prism shaped crystal of $C_{42}H_{32}BCuF_4N_2OP_2S_3$ • $CH_2Cl_2/(C_2H_5)_2O$, having approximate dimensions of $0.38 \times 0.11 \times 0.02$ mm was mounted on a nylon loop. The data were collected at a temperature of -183.0 + 0.1°C to a maximum 2 Θ value of 52.8°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 68044 reflections that were collected, 17006 were unique (Rint = 0.032); equivalent reflections were merged. The material crystallized with two molecules in the asymmetric unit and with a CH₂Cl₂ and (C₂H₅)₂O molecule occupying the same space in the asymmetric unit. Additionally, one BF₄ anion is disordered and was modeled in two orientations. A series of SADI commands were used to ensure reasonable geometries and displacement parameters. A list of the constraints and restraints used in this refinement can be found within the CIF. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 68044 reflections and 1121 variable parameters and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S25. Asymmetric unit of **13** with thermal ellipsoids drawn are at 50 % probability level. Hydrogen atoms are excluded for clarity.

Figure S26. Packing diagram of **13** viewed along the a-axis. Minor disordered fragments are shown as points. Hydrogen atoms are excluded for clarity.

$[Cu(POP)tzSO_2][BF_4](14)$

A yellow prism shaped crystal of $C_{41}H_{32}BCuF_4N_2O_3P_2S_3$ - CH_2Cl_2 , having approximate dimensions of $0.41 \times 0.21 \times 0.11$ mm was mounted on a nylon loop. The data were collected at a temperature of $-183.0 + 0.1^{\circ}C$ to a maximum 2 Θ value of 56.0°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 30265 reflections that were collected, 10029 were unique (Rint = 0.0215); equivalent reflections were merged. The material crystallized with one molecule of CH₂Cl₂ in the asymmetric unit. Additionally, the BF₄ anion is disordered and was modeled in two orientations. A series of SADI commands were used to ensure reasonable geometries and displacement parameters. A list of the constraints and restraints used in this refinement can be found within the CIF. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F² was based on 30265 reflections and 560 variable parameters and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S27. Solvated asymmetric unit of **14** with thermal ellipsoids drawn are at 50 % probability level.

Figure S28. Packing diagram of **14** viewed along the b-axis. Minor disordered fragments are shown as points. Hydrogen atoms are excluded for clarity.

$[Cu(POP)(hbtz)][BF_4]$ (15)

A yellow prism shaped crystal of $C_{90}H_{84}BCu_2F_4N_2O_2P_4S_2 \cdot (C_2H_5)_2O$, having approximate dimensions of $0.31 \times 0.26 \times 0.23$ mm was mounted on a glass fiber. The data were collected at a temperature of -183.0 + 0.1 °C to a maximum 2 Θ value of 56.7°. Data were collected in a series of ϕ and ω scans in 0.5° oscillations using 10.0-second exposures. Of the 30305 reflections that were collected, 11409 were unique (Rint = 0.020); equivalent reflections were merged. The material crystallized with 1 molecule of (C₂H₅)₂O in the asymmetric unit, which is disordered and modeled in two orientations. Additionally, the terminal CH₂ and CH₃ atoms in hexyl chain are disordered over three orientations. Finally, the BF₄ anion is disordered and was modeled in two orientations. A series of SADI commands were used to ensure reasonable geometries and displacement parameters. A list of the constraints and restraints used in this refinement can be found within the CIF. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement on F^2 was based on 30305 reflections and 696 variable parameters and converged. All refinements were performed using the ShelXL¹ via the OLEX2² interface. ORTEP diagrams were generated using PLATON. ³

Figure S29. Dimeric unit of **15** with thermal ellipsoids drawn are at 50 % probability level. Hydrogen atoms are excluded for clarity.

Figure S30. Packing diagram of **15** viewed along the b-axis. Minor disordered fragments are shown as points. Hydrogen atoms are excluded for clarity.

SPECTROSCOPIC DATA

Ruthenium(II) Complexes

Absorption Spectroscopy

Figure S31. UV-vis absorption spectra of Ru(II) complexes (solid traces) and pro-ligands (dashed traces) at 293 K. (a) tzS (5), tzSO₂ (6), $[Ru(bpy)_2(tzS)]^{2+}$ (9), and $[Ru(bpy)_2(tzSO_2)]^{2+}$ (10) in CH₂Cl₂; (b) **5**, **6**, $[Ru(phen)_2(tzS)]^{2+}$ (11) and $[Ru(phen)_2(tzSO_2)]^{2+}$ (12) in CH₂Cl₂, and (c) **5**, **6**, $[Ru(tzS)_3]^{2+}$ (7) and $[Ru(tzSO_2)_2(CH_3CN)_2]^{2+}$ (8) in CH₃CN.

Figure S32. Absorbance of $[Ru(bpy)_2(tzSO_2)]^{2+}$ (10) in CH₃CN in the dark (solid trace) and after sunlight irradiation for 72 h (dashed trace) at 293 K.

Photoluminescence Spectroscopy

Figure S33. Absorption (dashed trace) and emission (solid trace) spectra of ruthenium(II) complexes (a) $[Ru(bpy)_2(tzS)]^{2+}$ (**9**) and $[Ru(bpy)_2(tzSO_2)]^{2+}$ (**10**); (b) $[Ru(phen)_2(tzS)]^{2+}$ (**11**) and $[Ru(phen)_2(tzSO_2)]^{2+}$ (**12**); (c) $[Ru(tzS)_3]^{2+}$ (**7**) and $[Ru(tzSO_2)_2(CH_3CN)_2]^{2+}$ (**8**). Neat thin films drop-cast from CH_2Cl_2 at 293 K.

Figure S34. Absorption and emission of Ru(II) complexes (a) $[Ru(bpy)_2(tzS)]^{2+}$ (9) and $[Ru(bpy)_2(tzSO_2)]^{2+}$ (10); and (b) $[Ru(phen)_2(tzS)]^{2+}$ (11) and $[Ru(phen)_2(tzSO_2)]^{2+}$ (12). Doped in PMMA films drop-cast from CH₂Cl₂ at 293 K.

Table S8.	Maximum	emission	wavelength	for	Ru(II)	complexes	7–12 a	t room	temperat	ure as
solid and ir	n polymer m	atrix and	77 K for sele	ecte	d comp	ounds.				

Thin fi			
λ_{\max} (n	PMMA Matrix ^{<i>a</i>} λ_{max} (nm)		
293 K	77 K		
671 (735)	Ь	b	
668 (735)	Ь	b	
626; 666; (725)	615	599	
669; (725)	652	581; (627)	
615; (659); (740)	b	591	
667; (730)	b	b	
	$\begin{array}{c} {\rm Thin~fi} \\ \lambda_{\rm max}~(n) \\ \hline \\ \hline \\ 293~{\rm K} \\ \hline \\ 671~(735) \\ 668~(735) \\ 626;~666;~(725) \\ 626;~666;~(725) \\ 669;~(725) \\ 615;~(659);~(740) \\ 667;~(730) \end{array}$	Thin film ^a λ_{max} (nm) 293 K 77 K 671 (735) b 668 (735) b 626; 666; (725) 615 669; (725) 652 615; (659); (740) b 667; (730) b	

a. drop-cast from CH₂Cl₂; b. not attempted; () shoulders

Electrochemical Data

Table S9. Redox potentials of ruthenium(II) complexes (7–12) and selected literature complexes

 vs. NHE along with the electrochemical and optical band gaps.

		$E_g[eV]$	
$E_{ox} (Ru^{3+}/Ru^{2+}) [V]$	$E_{red}[V]$	Echem	Optical
1.54	-1.08; -1.27; -1.51; -2.15	2.62	_
1.61	-1.19; -1.29; -1.59; -1.99	2.80	_
1.11	-0.79; -1.00; -1.26	1.90	_
1.56	-0.84; -1.20; -1.42	2.40	_
1.62	-0.75; -1.23	2.19	2.75
0.95	-0.80; -1.09	1.75	2.47
1.52	-0.74; -1.31; -1.58	2.26	2.27
1.88	-0.57; -0.78	2.45	2.27
1.59	-0.71; -1.04	2.30	2.28
1.63	-0.85	2.48	2.28
	$\begin{array}{c} E_{ox} \left(Ru^{3+} / Ru^{2+} \right) \left[V \right] \\ \hline 1.54 \\ 1.61 \\ 1.11 \\ 1.56 \\ 1.62 \\ 0.95 \\ 1.52 \\ 1.88 \\ 1.59 \\ 1.63 \end{array}$	$\begin{array}{c c} E_{ox} \left(Ru^{3+} / Ru^{2+} \right) \left[V \right] & E_{red} \left[V \right] \\ \hline 1.54 & -1.08; -1.27; -1.51; -2.15 \\ \hline 1.61 & -1.19; -1.29; -1.59; -1.99 \\ \hline 1.61 & -0.79; -1.00; -1.26 \\ \hline 1.56 & -0.84; -1.20; -1.42 \\ \hline 1.62 & -0.75; -1.23 \\ \hline 0.95 & -0.80; -1.09 \\ \hline 1.52 & -0.74; -1.31; -1.58 \\ \hline 1.88 & -0.57; -0.78 \\ \hline 1.59 & -0.71; -1.04 \\ \hline 1.63 & -0.85 \\ \end{array}$	E_g $E_{ox} (Ru^{3+}/Ru^{2+}) [V]$ $E_{red} [V]$ Echem1.54 $-1.08; -1.27; -1.51; -2.15$ 2.621.61 $-1.19; -1.29; -1.59; -1.99$ 2.801.11 $-0.79; -1.00; -1.26$ 1.901.56 $-0.84; -1.20; -1.42$ 2.401.62 $-0.75; -1.23$ 2.190.95 $-0.80; -1.09$ 1.751.52 $-0.74; -1.31; -1.58$ 2.261.88 $-0.57; -0.78$ 2.451.59 $-0.71; -1.04$ 2.301.63 -0.85 2.48

Figure S35. Cyclic voltammetry of $[Ru(bpy)_2(tzS)][PF_6]_2$ (9) in 0.1 M NBu₄PF₆ CH₃CN solutions using a platinum working electrode vs. NHE at 293 K.

Figure S36. Cyclic voltammetry of $[Ru(bpy)_2(tzSO_2)][PF_6]_2$ (**10**) in 0.1 M NBu₄PF₆ CH₃CN solutions using platinum working electrode vs. NHE at 293 K.

Figure S37. Cyclic voltammetry of $[Ru(phen)_2(tzS)][PF_6]_2$ (11) in 0.1 M NBu₄PF₆ CH₃CN solutions using platinum working electrode vs. NHE at 293 K.

Figure S38. Cyclic voltammetry of $[Ru(phen)_2(tzSO_2)][PF_6]_2$ (12) in 0.1 M NBu₄PF₆ CH₃CN solutions using platinum working electrode vs. NHE at 293 K.

Figure S39. Cyclic voltammetry of $[Ru(tzS)_3][PF_6]_2$ (7) in 0.1 M NBu₄PF₆CH₃CN solutions using platinum working electrode vs. NHE at 293 K.

Copper(I) Complexes

Absorption Spectroscopy

Figure S40. Absorption spectra of the Cu(I) complexes (solid traces) $[Cu(POP)(tzS)]^+$ (13); $[Cu(POP)(tzSO_2)]^+$ (14); $[(POP)Cu(hbtz)Cu(POP)]^{2+}$ (15); and pro-ligands (dashed traces) tzS (5); tzSO₂ (6); and hbtz. CH₂Cl₂ solutions at 293 K.

Photoluminescence Spectroscopy

Figure S41. Absorption (dashed trace) and emission (solid trace) of Cu(I) species in CH_2Cl_2 solutions. *13 and 14 were found to be non-emissive in solution.

Figure S42. Absorption (dashed trace) and emission (solid trace) spectra of Cu(I) complexes doped in a PMMA matrix. All films drop-cast from CH₂Cl₂ and spectra collected at 293 K with $\lambda_{ex} = 405$ nm for (Except [Cu(POP)(tzS)]⁺ (13) in PMMA: $\lambda_{ex} = 430$ nm).

Electrochemical Data

Table S10. Electrochemical potentials (vs. NHE) of copper(I) complexes (13–15) measured in 0.1M NH₄PF₆ CH₃CN solutions at 293 K.

	E _{ox} (V)	$E_{red}(V)$	Eg (eV)	
			Echem	Optical
[Cu(POP)(tzS)] ⁺ (13)	1.67; 0.94	-0.86	2.53	3.12
[Cu(POP)(tzSO ₂)] ⁺ (14)	1.56	-1.32	2.84	2.56
[Cu(POP)(hbtz)] ⁺ (15)	1.89	-0.62; -1.05	2.51	2.43

Figure S43. Cyclic voltammetry of $[Cu(POP)(tzS)][BF_4]$ (**13**) in 0.1 M NBu₄PF₆CH₃CN solutions using a platinum working electrode vs. NHE at 293 K.

Figure S44. Cyclic voltammetry of $[Cu(POP)(tzSO_2)][BF_4]$ (14) in 0.1 M NH₄PF₆ CH₃CN solutions using platinum working electrode vs. NHE at 293 K.

Figure S45. Cyclic voltammetry of $[Cu(POP)(hbtz)][BF_4]$ (**15**) in 0.1 M NBu₄PF₆ CH₃CN solutions using platinum working electrode vs. NHE at 293 K.

REFERENCES

- 1 G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
- 2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- 3 A. L. Spek, Acta Crystallogr. C, 2015, 71, 9–18.
- 4 K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159–244.
- 5 A. Begum and P. G. Pickup, *Electrochem. Comm.*, 2007, 9, 2525–2528.