Electronic Supplementary Information (ESI)

Remarkable phosphorescent sensor for acid-base vapours based on AIPE-active Ir(III) complex

Dan Li, ‡‡ Guangfu Li, ‡‡ Weilong Che, ‡ Dongxia Zhu,*a and Zhongmin Su,*a

*a Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, P.R. China.

E-mail: zmsu@nenu.edu.cn; zhudx047@nenu.edu.cn.
Table of Contents

1. Experimental - general information .. S3
2. 1H NMR spectrum of complex 1 at room temperature S4
3. MS spectrum of complex 1 at room temperature S5
4. Photophysical properties ... S5
5. Reference .. S8
1. Experimental - general information

Materials obtained from commercial suppliers were used without further purification unless otherwise stated. All glassware, syringes, magnetic stirring bars, and needles were thoroughly dried in a convection oven. Reactions were monitored using thin layer chromatography (TLC). Commercial TLC plates were used and the spots were visualized under UV light at 254 and 365 nm. 1H NMR spectra were recorded at 25 ºC on a Varian 500 MHz spectrometer and were referenced internally to the residual proton resonance in DMSO-d_6 (δ 2.5 ppm). Transmission electron microscopy (TEM) and electron diffraction analyses of the samples were obtained using a TECNAI F20 microscope. The samples were prepared by placing microdrops of the solution on a holey carbon copper grid. UV-vis absorption spectra were recorded on a Shimadzu UV-3100 spectrophotometer. Photoluminescence spectra were collected on an Edinburgh FLS920 spectrophotometer.

Theoretical calculations

The calculations reported here were performed using the Gaussian 09 software package.$^{[1]}$ The geometrical structures for iridium(III) complexes were fully optimized with C1 symmetry constraints by using b3LYP methods with the LANL2DZ basis set for the Ir atom and 6-31G* for the rest of the atoms.$^{[2]}$

Synthesis of Schiff base (Scheme S1)

0.3622g (2 mmol) of 3,5-Diaminobenzoic acid and 0.20g (1.63 mmol) of Salicylaldehyde were refluxed in Ethanol (20 mL) at 78 ºC for 5 hours under a nitrogen atmosphere. The suspension was dried and purified by silica gel column chromatography with ethyl acetate/acetonc (5:1 v/v) as eluent. The Schiff base was obtained as an orange solid in 80% yield (0.37g).
Scheme S1 Synthetic route for Schiff base ligand

Synthesis of complex 1

A yellow suspension of the dichloro-bridged diiridium complex \([\text{Ir}(ppy)_2\text{Cl}]_2\)\(^{[3]}\) (0.1528 g, 0.2 mmol), Schiff base bridging ligand (0.1140 g, 0.4 mmol) and \(\text{Na}_2\text{CO}_3\) (0.212 g, 2 mmol) in 2-ethoxyethanol was stirred at 140 °C for 8 hours under a nitrogen atmosphere and the suspension was dried and purified by silica gel column chromatography with ethyl acetate/acetone (1:3 v/v) as eluent. The complex was obtained as an orange solid in 48% yield (0.152 g).

\[
\text{Ir}^{[3]}(ppy)_2\text{Cl} + \text{L} \xrightarrow{\text{Na}_2\text{CO}_3, 2\text{-ethoxyethanol, N}_2, 140 \degree\text{C, 8h}} \text{Complex 1}
\]

Scheme S2 Synthetic route for complex 1

2. \(^1\text{H NMR Spectrum of complex 1 at room temperature}\)

![1H NMR spectrum of complex 1 in DMSO-\(d_6\) at room temperature.](image)

Fig. S1 \(^1\text{H NMR spectrum of complex 1 in DMSO-}d_6\text{ at room temperature.}**
3. MS Spectrum of complex 1 at room temperature

Fig. S2 MS spectrum of complex 1 at room temperature.

4. Photophysical properties

Table S1 Photophysical characteristics of complex 1

<table>
<thead>
<tr>
<th>Absorption and emission at room temperature</th>
<th>Emission at 77 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{\text{em}} , ^a$ (nm)</td>
<td>$\lambda_{\text{em}} , ^b$ (nm)</td>
</tr>
<tr>
<td>404, 457</td>
<td>588</td>
</tr>
</tbody>
</table>

a Measured in DMSO (1.0×10⁻⁴ M) solution. b Measured in solid state ($\lambda_{\text{exc}} = 400$ nm; error for $\Phi_L \pm 5 \%$). c In DMSO solution.
Fig. S3 TEM image of nanoaggregates of complex 1 formed in DMSO–H₂O mixtures with 0% (a) and 90% (b) water fraction.

Fig. S4 Emission spectrum of complex 1 in DMSO solution (10⁻⁵ M) at 77 K.
Fig. S5 The normalized PL spectra of the complex 1 powder repeated fuming with HCl and NH$_3$ vapours.

Fig. S6 Photographs of pH test strips fuming with TFA, HCl, HCOOH, CH$_3$COOH vapours.

Fig. S7 Variations of the relative emission intensity (I/I_0) with the increasing f_w.
Fig. S8 Theoretically calculated frontier orbitals of complex 1 and complex 1-HCl.

5. Reference