Regulating vibrational mode to improve quantum efficiency, insights from theoretical calculations on iridium(III) complexes bearing tridentate NCN and NNC chelates

Yuanqing Lei, Hao Guo, Jian Wang, Ran Jia

\textit{Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China. Tel: +86-21-31249190; Fax: +86-21-31249190; E-mail: Hao_Guo@fudan.edu.cn}

\textit{College of Big Data and Information Engineering, Guizhou University, Huaxi District, 550025 Guiyang, P. R. China.}

\textit{International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China. E-mail: abbott.cn@gmail.com}

* Correspondence to:
Hao_Guo@fudan.edu.cn (Hao Guo)
abbott.cn@gmail.com (Jian Wang)

Supplementary Information
Figure ESI-1 The swing vibration modes of hydrogen atoms at the 3,5 position of benzene on NCN ligand.

Figure ESI-2 Huang-Rhys factor vs vibration normal modes, for Ir-0.
Figure ESI-3 Huang-Rhys factor vs vibration normal modes, for Ir-1.

Figure ESI-4 Huang-Rhys factor vs vibration normal modes, for Ir-2.
Figure ESI-5 Huang-Rhys factor vs vibration normal modes, for Ir-3.

Figure ESI-6 Huang-Rhys factor vs vibration normal modes, for Ir-4.
Figure ESI-7 Extra stretching vibration mode introduced by CH$_3$O group, in Ir-2.