Crystal-Engineering and Luminescent Studies of 1,3,5-Tris(3-pyridylethynyl)benzene or 1,3,5-Tris(4-pyridylethynyl)benzene with Copper(I) Iodides

Biing-Chiau Tzeng* and Jun-Fu Lin

Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi 62102, Taiwan

Supporting Information

Figure S1. The experimental and simulated powder X-ray diffraction patterns of 1.
Figure S2. The experimental and simulated powder X-ray diffraction patterns of 2.
Figure S3. The experimental and simulated powder X-ray diffraction patterns of 3.
Figure S4. The experimental and simulated powder X-ray diffraction patterns of 4.
Figure S5. The experimental and simulated powder X-ray diffraction patterns of 5.
Figure S6. The TGA trace of 1.
Figure S7. The TGA trace of 2.
Figure S8. The TGA trace of 3.
Figure S9. The TGA trace of 4.
Figure S10. The TGA trace of 5.
Figure S11. The normalized emission spectra for solid samples of 1 at room temperature (black) and at 77K (red). Excitation wavelengths are at 350 nm.
Figure S12. The normalized emission spectra for solid samples of 2 at room temperature (black) and at 77K (red). Excitation wavelengths are at 350 nm.
Figure S13. The normalized emission spectra for solid samples of 5 at room temperature (black) and at 77K (red). Excitation wavelengths are at 350 nm.
Figure S1
Figure S2
Figure S3
Figure S4
In situ (A.U.)

The l-aspartate added

Figure S5
$T = 250^\circ C$
Weight loss = 8.3%
Calculated: $C_6H_5CH_3 + 2H_2O = 7.6\%$

Atmosphere: N$_2$ at 20mL/min
Temp rate: 5 deg/min

Figure S6
Figure S7

T = 240°C
Weight loss = 10.3%
Calculated: $1.5C_6H_6 + CH_3CN = 10.5\%$

Atmosphere: N2 at 20 mL/min
Temp rate: 5 deg/min
Atmosphere: N2 at 20mL/min
Temp rate: 5 deg/min

Figure S8
Figure S9

T = 200°C
Weight loss = 11.2%
Calculated: \(\text{C}_6\text{H}_6 = 12.0\% \)

Atmosphere: N2 at 20mL/min
Temp rate: 5 deg/min
T = 230°C
Weight loss = 7.5%
Calculated: C\textsubscript{6}H\textsubscript{6} = 8.5%

Atmosphere: N\textsubscript{2} at 20mL/min
Temp rate: 5 deg/min

Figure S10
Figure S11
Figure S12
Figure S13