Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Table of Contents

General Considerations	2
Synthesis and Characterization of the Compounds	3
Crystallographic Data	5
NMR-Spectra	7
References	14

General Considerations

All reactions were carried out under an inert atmosphere of argon or nitrogen with rigorous exclusion of oxygen and moisture using standard glovebox and Schlenk techniques. The glass equipment was stored in an oven at 120 °C and evacuated prior to use. Solvents and liquid educts were dried according to standard procedures and/or freeze-pump-thaw degassed three times prior to use. Solvents were distilled over Na/K alloy and benzophenone or CaH₂ under nitrogen atmosphere. Solid materials were stored and weighed in a glovebox or dried under high vacuum before use. Cp*TiCl₃ was synthesized according to a literature procedure.^[1] The iminophosphane **L1** was synthesized according to a literature procedure.^[2]

NMR spectra were recorded on Bruker Avance 300, Bruker Avance 500, and Bruker Avance III 500 spectrometers. ¹H NMR spectra were referenced to the residual solvent resonance as internal standard (benzene-d₆ (C₆D₆): δ^{1} H(C₆D₅H) = 7.16 ppm) and ¹³C{¹H} spectra were referenced by using the central line of the solvent signal (benzene-d₆ (C₆D₆): δ^{13} C{¹H}(C₆D₆) = 128.06 ppm). ³¹P{¹H} NMR were referenced against external standards (H₃PO₃, δ (³¹P{¹H}) H₃PO₄ 0.0 ppm). The given chemical shifts of ¹⁵N result out of ¹⁵N, ¹H HMBC NMR experiments with nitromethane as external standard (δ = 378.9 vs. NH₃).

Melting points were determined using a "Mel-Temp" apparatus by Laboratory Devices, Cambridge, U.K..

Infrared spectra were performed on a Bruker Tensor 27 spectrometer with a MKII Reflection Golden Gate Single Diamond ATR system.

Combustion analyses were carried out on a EuroEA 3000 Elemental Analyzer. Satisfactory combustion analyses of **1** could not be obtained due to its high reactivity.

Synthesis and Characterization of the Compounds:

Synthesis of 1 and 2:

Cp*TiCl₃ (0.935 g, 3.230 mmol), magnesium (0.079 g, 3.230 mmol), and iminophosphane **L1** (0.980 g, 3.230 mmol) were dissolved in 20 mL of tetrahydrofuran and stirred for 16 h at room temperature. The solvent was removed under vacuum, the resulting reddish solid was filtrated with *n*-hexane (4×15 mL). Removal of all volatiles, solving the residue in *n*-hexane and storage at -26 °C for 48 h resulted in the precipitation of red crystals, which were suitable for single-crystal X-ray diffraction. Direct removal of all volatiles under vacuum yielded a red-brown solid, whose NMR spectrum is shown in Figure **S3**. Subsequent removal of all volatiles from the supernatant, solving the residue in toluene, and storage at -26 °C yielded **2** as yellow crystals.

1 is extremely sensitive toward air and moisture, but can be stored for weeks in the glovebox without indication of decomposition. Due to its high air- and moisture sensitivity, elemental analysis failed.

Yield: 0.301 g (0.577 mmol, 18% crystalline yield).

Melting point: 118-120 °C (dec.).

IR (ATR): $\tilde{v} = 3052, 2977, 2952, 2908, 2855, 1672, 1586, 1483, 1434, 1376, 1288, 1210, 1178, 1161, 1096, 1026, 1000, 977, 891, 789, 759, 742, 692, 618 cm⁻¹.$

¹**H NMR** (500 MHz, C₆D₆, 305 K): $\delta = 2.04$ (s, 15H, C₅Me₅), 3.34 (d, ⁴*J*_{P,H} = 8.3 Hz, 3H, NCH₃), 6.79-6.82 (m, 1H, *p*-CH_{Ph}C_qN), 6.86-6.88 (m, 3H, 2×*o*-CH_{Ph}C_qN, *p*-CH_{Ph}P), 6.93-6.94 (m, 2H, 2×*o*-CH_{Ph}P), 7.01-7.04 (m, 2H, 2×*m*-CH_{Ph}C_qN), 7.16-7.21 (m, 3H, 2×*o*-CH_{Ph}P, *p*-CH_{Ph}P)*, 7.55-7.60 (m, 2H, 2×*m*-CH_{Ph}P), 7.87-7.91 (m, 2H, 2×*m*-CH_{Ph}P) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): $\delta = 12.5$ (C₅Me₅), 43.4 (NCH₃), 69.9 (d, ¹J_{C,P} = 30.9 Hz, NC_q), 121.6 (<u>C</u>₅Me₅), 124.0 (*p*-<u>C</u>H_{Ph}C_qN), 126.6 (*o*-<u>C</u>H_{Ph}C_qN), 127.7

 $(m-\underline{C}H_{Ph}C_{q}N)$, 129.0 (d, ${}^{2}J_{C,P} = 10.0$ Hz, 2×o-CH_{Ph}P), 129.2 (d, ${}^{2}J_{C,P} = 9.6$ Hz, 2×o-CH_{Ph}P), 130.0 (*p*-CH_{Ph}P), 130.9 (*p*-CH_{Ph}P), 132.1 ($\underline{C}_{q,Ph}C_{q}N$), 134.1 (d, ${}^{3}J_{C,P} = 14.1$ Hz, 2×*m*-CH_{Ph}P), 135.0 (d, ${}^{3}J_{C,P} = 14.0$ Hz, 2×*m*-CH_{Ph}P), 139.7 (d, ${}^{1}J_{C,P} = 19.7$ Hz, 2×C_{q,Ph}P) ppm.

* = overlap with C_6D_6 signal

³¹**P**{¹**H**} **NMR** (202 MHz, C₆D₆, 305 K): δ = -44.2 ppm.

¹⁵N NMR (202 MHz, C₆D₆, 300 K): δ = 278.6 ppm.

Yield: 0.047 g (0.126 mmol, crystalline yield)

Melting point: >250 °C.

IR (ATR): $\tilde{\nu} = 3056$, 2982, 2909, 2856, 1672, 1614, 1593 (C=N), 1488, 1438, 1373, 1352, 1240, 1175, 1148, 1131, 1101, 1080, 1029, 978, 963, 926, 889, 843, 804, 755, 745, 712, 690, 640, 619, 612 cm⁻¹.

¹**H NMR** (500 MHz, C₆D₆, 305 K): $\delta = 1.87$ (s, 15H, C₅Me₅), 3.23 (s, 3H, NCH₃), 7.07-7.12 (m, 3H, 2×*m*-CH_{Ph}C_q=N, *p*-CH_{Ph}C_q=N), 7.56-7.57 (m, 2H, 2×*o*-CH_{Ph}C_q=N) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): $\delta = 12.9$ (C₅Me₅), 37.6 (NCH₃), 126.6 (<u>C</u>₅Me₅), 129.1 (2×*o*-<u>C</u>H_{Ph}C_q=N), 130.5 (2×*m*-<u>C</u>H_{Ph}C_q=N), 131.1 (C_{q,Ph}), 132.2 (*p*-<u>C</u>H_{Ph}C_q=N), 230.5 (N=C_q) ppm.

¹⁵N NMR (202 MHz, C₆D₆, 300 K): δ = 275.3 ppm.

EA: Anal. calcd. for C₁₈H₂₃Cl₂NTi: C, 58.09; H, 6.23; N, 3.76; Found: C, 57.52; H, 6.57; N, 3.44.

Crystallographic Data:

Suitable crystals were selected and measured on a 'Bruker APEX-II CCD' diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal was kept at 100.15 K during data collection. Using Olex2,^[3] the structure was solved with the SheIXS^[4] structure solution program using Direct Methods and refined with the SheIXL^[5] refinement package using Least Squares minimisation.

	1	2
CCDC	1877413	1877412
empirical formula	C ₃₀ H ₃₃ CINPTi	C ₁₈ H ₂₃ Cl ₂ NTi
fw	521.89	372.17
colour	red	yellow
Habit	plate	block
cryst dimens, mm	0.40 x 0.36 x 0.08	0.20 x 0.14 x 0.06
cryst syst	monoclinic	monoclinic
space group	P21/n	<i>P</i> 2 ₁
a, Å	10.7515(4)	8.9069(8)
b, Å	16.5847(6)	13.7152(12)
c, Å	16.1243(6)	15.0922(13)
α , deg	90	90
β , deg	108.8885(10)	101.607(2)
γ, deg	90	90
V, ų	2720.30(17)	1806.0(3)
Z	4	4
D _{caclcd} , g cm⁻³	1.274	1.369
μ, mm⁻¹	0.490	0.766
Т, К	200(2)	100(2)
heta range, deg	1.814 – 32.031	1.377 – 33.724
no. of rflns collected	104120	97555
no. of indep rflns	9474	14412
(R(int))	(0.0382)	0.0450
no. of rfIns with I>2 <i>o</i> (I)	7625	13039
abs cor	numerical	numerical
max, min transmission	0.9666 and 0.8445	0.9533 and 0.8715
final R indices	R1 = 0.0360	R1 = 0.0325
[l>2 <i>o</i> (l)]	wR2 = 0.0921	wR2 = 0.0701
	R1 = 0.0501	R1 = 0.0393
R indices (all data)	wR2 = 0.1010	wR2 = 0.0732
GOF on F ²	1.044	1.045
largest diff peak / hole	0.427 / -0.200	0.496 / -0.458
(e.Å⁻³)		

Table S1: Crystal Structure Data for Compounds 1, 2.

Figure S1: Molecular structure of 1.

Figure S2: Molecular structure of 2.

 90 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -21 **Figure S4**: $^{31}P{^{1}H}$ NMR spectrum of the crude product (202 MHz, C₆D₆, rt).

8.5 8.0 7.0 6.5 5.5 0.5 7.5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Figure S6: ¹H NMR spectrum of the crude product (bottom, 500 MHz, C₆D₆, rt), 1 (middle, 500 MHz, C₆D₆, rt), and **2** (top, 500 MHz, C₆D₆, rt).

3.35

___2.04

²⁴⁰ 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 **Figure S8**: ¹³C{¹H} NMR spectrum of **1** (126 MHz, C₆D₆, rt).

90 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -21 **Figure S9**: ${}^{31}P{}^{1}H$ NMR spectrum of **1** (202 MHz, C₆D₆, rt).

__3.23 __1.87 $< \frac{7.57}{7.56} < \frac{7.12}{7.07} < \frac{7.12}{7.07}$ Me 15.00 3.08 3.06 2.04
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0

 Figure S11:
 ¹H NMR spectrum of **2** (500 MHz, C₆D₆, rt).
.0 2.0 8.5 8.0 1.5 1.0 0. __ 230.47 ___12.89 ___37.60 Me С

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 **Figure S12**: ¹³C{¹H} NMR spectrum of **2** (126 MHz, C₆D₆, rt).

Figure S14: Picture of crystalline **1** (red crystals) taken a few seconds after the transfer to Fomblin YR-1800. The crystals immediately start to decompose to form a yellow oily residue.

References:

[1]	G. H. Llinas, M. Mena, F. Palacios, P. Royo, R. Serrano, J. Organomet. Chem. 1988,
	340, 37-40.
[2]	M. K. Rong, K. van Duin, T. van Dijk, J. J. M. de Pater, BJ. Deelman, M. Nieger, A. W.
	Ehlers, J. C. Slootweg, K. Lammertsma, Organometallics 2017, 36, 1079-1090.
[3]	O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl.
	<i>Cryst.</i> 2009 , <i>4</i> 2, 339-341.
[4]	G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
[5]	G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.