Supporting Information for

Synthesis, characterization, photoluminescence, anti-tumor activity, DFT calculations and molecular docking with proteins of zinc (II) halogen substituted terpyridine compounds

Xing Lianga,b, Jinzhang Jianga, Xingyong Xuea, Ling Huanga, Xuanxuan Dinga, Dongmei Nonga, Hailan Chena,c,*, Lixia Pand,*, Zhen Maa,e,*

aSchool of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
bGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, 530004, PR China
cSchool of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
dState Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, PR China
eCentro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
Fig. S1 The 1H NMR spectrum of compound 1.

Fig. S2 The 1H NMR spectrum of compound 2.
Fig. S3 The 1H NMR spectrum of compound 4.

Fig. S4 The 1H NMR spectrum of compound 5.
Fig. S5 The 1H NMR spectrum of compound 6.

Fig. S6 The 1H NMR spectrum of compound 7.
Fig. S7 The 1H NMR spectrum of compound 8.

Fig. S8 The IR spectrum of compound 1.
Fig. S9 The IR spectrum of compound 2.

Fig. S10 The IR spectrum of compound 4.

Fig. S11 The IR spectrum of compound 5.
Fig. S12 The IR spectrum of compound 6.

Fig. S13 The IR spectrum of compound 7.

Fig. S14 The IR spectrum of compound 8.
Fig. S15. UV–vis spectra of compounds 2 for a period of 24 h.

Fig. S16. UV–vis spectra of compounds 3 for a period of 24 h.
Fig.S17. UV–vis spectra of compounds 4 for a period of 24 h.

Fig.S18. UV–vis spectra of compounds 5 for a period of 24 h.

Fig.S19. UV–vis spectra of compounds 6 for a period of 24 h.
Fig. S20. UV–vis spectra of compounds 8 for a period of 24 h.

Fig. S21. The standard curves of UV–vis spectra for compounds 1-8.
<table>
<thead>
<tr>
<th>Compound concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>0.3μM</td>
<td>0.5μM</td>
<td>0.3μM</td>
<td>0.1μM</td>
</tr>
<tr>
<td>C1</td>
<td>2.8μM</td>
<td>4.2μM</td>
<td>2.8μM</td>
<td>0.7μM</td>
</tr>
<tr>
<td>C2</td>
<td>11.4μM</td>
<td>17.0μM</td>
<td>11.4μM</td>
<td>3.0μM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound concentration</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>0.3μM</td>
<td>0.08μM</td>
<td>0.2μM</td>
<td>0.2μM</td>
</tr>
<tr>
<td>C1</td>
<td>2.8μM</td>
<td>0.7μM</td>
<td>1.7μM</td>
<td>1.4μM</td>
</tr>
<tr>
<td>C2</td>
<td>11.4μM</td>
<td>2.8μM</td>
<td>6.8μM</td>
<td>5.9μM</td>
</tr>
</tbody>
</table>

Fig. S22 The morphology of A549 cells treated with cisplatin (C1: 2.6 μM and C2: 43 μM) or compounds 1-8 with series concentrations (the numbers in the pictures indicate the concentration of the compounds with the unit of μM). The control inset shows the cell morphology without any complexes.
Fig. S23 The morphology of Bel-7049 cells treated with cisplatin (C1: 2.6 μm and C2: 43 μM) or compounds 1-8 with series concentrations (the numbers in the pictures indicate the concentration of the compounds with the unit of μM). The control inset shows the cell morphology without any complexes.
<table>
<thead>
<tr>
<th>Compound concentration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>0.3μM</td>
<td>0.5μM</td>
<td>0.3μM</td>
<td>0.1μM</td>
</tr>
<tr>
<td>C1</td>
<td>2.8μM</td>
<td>4.2μM</td>
<td>2.8μM</td>
<td>0.7μM</td>
</tr>
<tr>
<td>C2</td>
<td>11.4μM</td>
<td>17.0μM</td>
<td>11.4μM</td>
<td>3.0μM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound concentration</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>0.3μM</td>
<td>0.08μM</td>
<td>0.2μM</td>
<td>0.2μM</td>
</tr>
<tr>
<td>C1</td>
<td>1.4μM</td>
<td>0.7μM</td>
<td>1.7μM</td>
<td>1.5μM</td>
</tr>
<tr>
<td>C2</td>
<td>5.7μM</td>
<td>3.0μM</td>
<td>6.8μM</td>
<td>5.9μM</td>
</tr>
</tbody>
</table>

Fig. S24 The morphology of MCF-7 cells treated with cisplatin (C1: 2.6 μm and C2: 43 μM) or compounds 1-8 with series concentrations (the numbers in the pictures indicate the concentration of the compounds with the unit of μM). The control inset shows the cell morphology without any complexes.
Fig.S25. Fluorescence emission spectra of compound 2 with or without ctDNA. The added ctDNA concentrations were 0, 1.06, 2.12, 3.18, 4.24, 5.30, 6.36, 7.42, 8.48 μM. The inset shows the curves of F₀/F vs. [Q] of compound 2 (R is the correlated coefficient for the Ksv values).

Fig.S26. Fluorescence emission spectra of compound 3 with or without ctDNA. The added ctDNA concentrations were 0, 1.06, 2.12, 3.18, 4.24, 5.30, 6.36, 7.42, 8.48 μM. The inset shows the curves of F₀/F vs. [Q] of compound 3 (R is the correlated coefficient for the Ksv values).
Fig. S27. Fluorescence emission spectra of compound 4 with or without ctDNA. The added ctDNA concentrations were 0, 1.06, 2.12, 3.18, 4.24, 5.30, 6.36, 7.42, 8.48 μM. The inset shows the curves of F_0/F vs. [Q] of compound 4 (R is the correlated coefficient for the K_{sv} values).

Fig. S28. Fluorescence emission spectra of compound 5 with or without ctDNA. The added ctDNA concentrations were 0, 1.06, 2.12, 3.18, 4.24, 5.30, 6.36, 7.42, 8.48 μM. The inset shows the curves of F_0/F vs. [Q] of compound 5 (R is the correlated coefficient for the K_{sv} values).
Fig. S29. Fluorescence spectra of compound 6 with or without ctDNA. The added ctDNA concentrations were 0, 1.06, 2.12, 3.18, 4.24, 5.30, 6.36, 7.42, 8.48 μM. The inset shows the curves of F_0/F vs. [Q] of compound 6 (R is the correlated coefficient for the K_m values).

Fig. S30. Fluorescence spectra of compound 8 with or without ctDNA. The added ctDNA concentrations were 0, 1.06, 2.12, 3.18, 4.24, 5.30, 6.36, 7.42, 8.48 μM.
Fig. S31 CD spectrum of ctDNA in the presence of complexes 2.

Fig. S32 CD spectrum of ctDNA in the presence of complexes 3.

Fig. S33 CD spectrum of ctDNA in the presence of complexes 4.
Fig.S34 CD spectrum of ctDNA in the presence of complexes 5.

Fig.S35 CD spectrum of ctDNA in the presence of complexes 6.

Fig.S36 CD spectrum of ctDNA in the presence of complexes 8.
Fig. S37 2D and 3D binding modes of compound 2 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).
Fig. S38 2D and 3D binding modes of compound 3 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).
Fig. S39 2D and 3D binding modes of compound 4 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).
Fig. S40 2D and 3D binding modes of compound 5 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).
Fig. S41 2D and 3D binding modes of compound 6 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).
Fig. S42 2D and 3D binding modes of compound 7 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).
Fig. S43 2D and 3D binding modes of compound 8 with HSP90 (A), ALK kinase domain (B), EGFR kinase domain (C) and HER2 kinase domain (D).