Supporting Information

Unraveling the relationship between morphologies of metal-organic frameworks and properties of their derived carbon materials

Qiao Wu,ab Jun Liang, a Jun-Dong Yi,a Dong-Li Meng,a Peng-Chao Shi,a Yuan-Biao Huangac and Rong Caoac

aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
bCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
cUniversity of Chinese Academy of Sciences, Beijing 100049, China
Physical and chemical characterization

Powder X-ray diffraction (PXRD) patterns were recorded on a RigakuDmax 2500 diffractometer equipped with Cu-Kα radiation (λ= 1.54056 Å) over the 2θ range of 4-50° for MOFs and 4-80° for carbon materials with a scan speed of 3° min⁻¹ at room temperature. Thermogravimetric analyses (TGA) were performed under a nitrogen atmosphere with a heating rate of 10 °C min⁻¹ by using an SDT Q600 thermogravimetric analyser. N₂ sorption isotherms for MOFs and the derived carbon materials were measured by using a Micrometrics ASAP 2020 instrument at 77 K. Before the measurement, the samples were activated at 393 K in vacuum for 12 h. The transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) images were obtained on a FEIT 20 instrument at an accelerating voltage of 200 kV. Raman spectra of dried samples were obtained on Lab-RAM HR800 with excitation by an argon ion laser (532 nm). Elemental analyses of C, H, and N were carried out on an ElementarVario EL III analyzer. The morphologies of MOFs were studied using a (JSM-6700F) scanning electron microscope (SEM) working at 10 KV. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher) using an Al Kα source (15 kV, 10 mA).

Fig. S1 Size distribution of 45 nm spherical shape ZIF-7-S (from a total number of 400).
Fig. S2 Size distribution of 125 nm polyhedral shape ZIF-7-D (from a total number of 300).

Fig. S3 Rod ZIF-7-R with (a) 3\(\mu\)m in length and (b) 0.6 \(\mu\)m in diameter.
Fig. S4 PXRD patterns of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S5 N$_2$ sorption isotherms of ZIF-7-S, ZIF-7-D and ZIF-7-R.
Fig. S6 Thermogravimetric analysis (TGA) of ZIF-7-S, ZIF-7-D and ZIF-7-R.

Fig. S7 Linear sweep voltammetry (LSV) curves for NC-D-700, NC-D-800 and NC-D-900 at an RDE rotation rate of 1600 rpm with a scan rate of 5 mVs$^{-1}$.

We have investigated the effect of different carbonization temperatures for NC-D-x ($x = 700, 800, 900$) materials on the performance of ORR reactions. The LSV measurement results of the NC-D-x prepared at different temperatures were shown in Fig. S7. NC-D-800 showed the most positive onset (0.87 V vs RHE), which was superior to NC-D-700 (0.77 V) and NC-D-900 (0.83 V), suggesting a pronounced electrocatalytic activity of NC-D-800 for ORR.
Table S1 Textural properties of ZIF-derived porous N-doped carbon materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area (m² g⁻¹)</th>
<th>Total pore volume (cm³ g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-S-800</td>
<td>352</td>
<td>0.43</td>
</tr>
<tr>
<td>NC-D-800</td>
<td>538</td>
<td>0.41</td>
</tr>
<tr>
<td>NC-R-800</td>
<td>272</td>
<td>0.17</td>
</tr>
<tr>
<td>NC-D-NH₃</td>
<td>636</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Fig. S8 Pore size distributions of NC-S-800, NC-D-800 and NC-R-800, respectively.
Table S2 Nitrogen atom percentage of obtained porous N-doped carbon materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ncontent (wt%)</th>
<th>Ncontent (wt%)</th>
<th>pyridinic-N (%)</th>
<th>pyrrolic-N (%)</th>
<th>graphitic-N (%)</th>
<th>pyridine-N-oxide (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC-S-800</td>
<td>11.05</td>
<td>9.91</td>
<td>37.7</td>
<td>30.9</td>
<td>25.3</td>
<td>6.1</td>
</tr>
<tr>
<td>NC-D-800</td>
<td>10.30</td>
<td>9.42</td>
<td>39.5</td>
<td>23.3</td>
<td>30.4</td>
<td>6.8</td>
</tr>
<tr>
<td>NC-R-800</td>
<td>10.24</td>
<td>8.58</td>
<td>38.3</td>
<td>25.7</td>
<td>28.4</td>
<td>7.6</td>
</tr>
<tr>
<td>NC-D-NH₃</td>
<td>2.28</td>
<td>2.09</td>
<td>19.1</td>
<td>13.2</td>
<td>54.6</td>
<td>13.1</td>
</tr>
</tbody>
</table>

a Based on elemental analysis results.

b Based on X-ray photoelectron spectroscopy (XPS).

![Fig. S9](image-url) (a) LSV curve of NC-D-800 at different rotation rates, (b) Linear fitting curve of K-L plots.
Fig. S10 (a) LSV curve of NC-S-800 at different rotation rates, (b) Linear fitting curve of K-L plots.

Fig. S11 (a) LSV curve of NC-R-800 at different rotation rates, (b) Linear fitting curve of K-L plots.
Fig. S12 Linear sweep voltammetry (LSV) curves for NC-D-800, NC-D-NH$_3$(800) and NC-D-NH$_3$(1000) at an RDE rotation rate of 1600 rpm with a scan rate of 5 mVs$^{-1}$.

NC-D-800 was treated at 800 °C for 30 min under flowing NH$_3$ to obtain NC-D-NH$_3$(800), while treated at 1000 °C for 30 min under flowing NH$_3$ to obtain NC-D-NH$_3$(1000).

The LSV measurement results of the NC-D-NH$_3$(x) (x = 800, 1000) prepared at different temperatures were shown in Fig. S12. NC-D-NH$_3$(1000) showed the best ORR activity with the most positive onset of 1.0 V (vs RHE) and half-wave potentials of 0.82 V, which was superior to NC-D-NH$_3$(800) with positive onset of 0.89 V and half-wave potentials of 0.77 V. Furthermore, compared with the NC-D-NH$_3$(800), NC-D-NH$_3$(1000) showed higher diffusion-limiting current density of 5.65 mA cm$^{-2}$ at 0.2 V, indicating that NC-D-NH$_3$(1000) obtained at 1000 degrees with NH$_3$ atmosphere has better ORR activity.
Fig. S13 The NC-D-NH$_3$ of (a-b) SEM images with different scale bars, (c) TEM image (d) HRTEM image.

Fig. S14 (a) N$_2$ sorption isotherms and (b) pore size distributions for NC-D-NH$_3$. Solid symbols denote adsorption, open symbols denote desorption (P/P_0 = partial pressure).
Fig. S15 N 1s spectra of NC-D-NH$_3$ with four kinds of nitrogen species (pyridinic-N, pyrrolic-N, graphitic-N, and pyridinic-N-oxide)