Electronic Supplementary Information

Interfacial Polarizations Induced by Incorporating Traditional Perovskite into Reduced Graphene Oxide (RGO) For Strong Microwave Response

Sisi Daia,b, Bin Quanb, Baoshan Zhanga,*, Xiaohui Liangb, Guangbin Jib,*

a School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, P. R. China.

b College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.

*Corresponding Author:

Prof. Dr. Baoshan Zhang; Prof. Guangbin Ji

E-mail: bszhang@nju.edu.cn; gbji@nuaa.edu.cn
Fig. S1. Values of $\tan \varepsilon_r$ and attenuation constant α depending on the frequency.

Fig. S2. XRD patterns of pure RGO.
Fig. S3. Frequency dependence of the electromagnetic parameters of the S3/paraffin composites with 60 wt% filler loadings (a); The impedance matching ratio of S3 (b); Absorbing ability measured by RL values of S3 (c).

Fig. S4. The XPS images of S1.

Fig. S5. Cole-Cole semicircles of (a) S1, (b) S2, (c) S3 and (d) MS.
Fig. S6. (a) loss tangent and attenuation constant α of S1, S2 and S3.