SUPPORTING INFORMATION

Heterobimetallic Ruthenium-Zinc Complexes with Bulky N-Heterocyclic Carbenes: Syntheses, Structures and Reactivity

Maialen Espinal-Viguri, Victor Varela-Izquierdo, Fedor M. Miloserdov, Ian M. Riddlestone, Mary F. Mahon and Michael K. Whittlesey

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
Figure S1. 1H NMR spectrum (500 MHz, CD$_2$Cl$_2$, 298 K) of [Ru(2)(CO)ZnMe][BAr$_{6}$]$_6$ (7).

Figure S2. 13C{H} PENDANT NMR spectrum (101 MHz, CD$_2$Cl$_2$, 298 K) of [Ru(2)(CO)ZnMe][BAr$_{6}$]$_6$ (7).
Figure S3. High frequency region of the 1H NMR spectrum (500 MHz, CD$_2$Cl$_2$, 298 K) of [Ru(IPr)$_2$(CO)(η2-H)$_2$(H)$_2$ZnMe][BAr$_{5}$F$_4$] (8).

Figure S4. Variable temperature proton NMR spectra of the low frequency region of the 1H NMR spectrum (500 MHz, CD$_2$Cl$_2$) of [Ru(IPr)$_2$(CO)(η2-H)$_2$(H)$_2$ZnMe][BAr$_{5}$F$_4$] (8).
Figure S5. 13C\{H\} PENDANT NMR spectrum (101 MHz, CD$_2$Cl$_2$, 298 K) of [Ru(IPr)$_2$(CO)(η2-H$_2$)(H)$_2$ZnMe][BAR$_6$$_4$] (8).

Figure S6. 1H NMR spectrum (500 MHz, CD$_2$Cl$_2$, 298 K) of [Ru(IPr)$_2$(CO)(H)$_2$ZnMe][BAR$_6$$_4$] (9).
Figure S7. 13C{1H} PENDANT NMR spectrum (101 MHz, CD$_2$Cl$_2$, 298 K) of [Ru(IPr)$_2$(CO)(H)ZnMe][BAr$_x$$_y$] (9).

Figure S8. 1H NMR spectrum (500 MHz, CD$_2$Cl$_2$, 223 K) of [Ru(IBiox)$_2$(CO)HCl] (10).
Figure S9. 13C{1H} PENDANT NMR spectrum (126 MHz, CD$_2$Cl$_2$, 223 K) of [Ru(IIbox$_6$)$_2$(CO)HCl] (10).

Figure S10. 1H NMR spectrum (500 MHz, THF-d_8, 298 K) of [Ru(IIbox$_6$)$_2$(CO)(THF)H][BAR$_4$] (11).
Figure S11. High (top) and lower (bottom) frequency regions of the 13C{^1}H PENDANT NMR spectrum (126 MHz, THF-d_8, 298 K) of [Ru(Biox6)2(CO)(THF)H][BAr$_4^-$] (11).
Figure S12. 1H NMR spectrum (500 MHz, THF-d_8, 298 K) of [Ru(IBiox6)$_2$(CO)(THF)ZnMe][BAr$_4^-$] (12).

Figure S13. 13C{1H} PENDANT NMR spectrum (126 MHz, THF-d_8, 298 K) of [Ru(IBiox6)$_2$(CO)(THF)ZnMe][BAr$_4^-$] (12).
Figure S14. 1H NMR spectrum (500 MHz, CDCl$_3$, 298 K) of [Ru(IBioxMe)$_2$(CO)HCl] (13).

Figure S15. 13C{1H} PENDANT NMR spectrum (126 MHz, CDCl$_3$, 298 K) of [Ru(IBioxMe)$_2$(CO)HCl] (13).
Figure S16. 1H NMR spectrum (400 MHz, THF-d_8, 298 K) of [Ru(IBioxMe$_4$)$_2$(CO)(THF)H][BAr$_4$F$_4$] (14).

Figure S17. 13C{1H} NMR spectrum (101 MHz, THF-d_8, 298 K) of [Ru(IBioxMe$_4$)$_2$(CO)(THF)H][BAr$_4$F$_4$] (14).
[Ru(IMes)(PPh₃)(CO)HCl]. The compound was synthesised by a minor modification of the literature procedure.¹ IMes (200 mg, 0.655 mmol) was added to the suspension of finely powdered [Ru(PPh₃)₃(CO)HCl]·CH₂Cl₂ (426 mg, 0.410 mmol) in toluene (5 mL). The solution was stirred overnight, after which time reaction was complete by 31P{1H} NMR spectroscopy. The solvent was concentrated under vacuum to ca. 0.5 mL and treated with hexane (8 mL) at room temperature. A yellow-orange microcrystalline precipitate was filtered off, washed with hexane (3 x 5 mL) and dried under vacuum. Yield 256 mg (85%).

Figure S18. 1H NMR spectrum (500 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)ZnMe] (15).
Figure S19. 1H NMR spectrum (500 MHz, THF-d_8, 298 K) of [Ru(IMes)(PPh$_3$)(CO)ZnMe] (15).

Figure S20. 31P{1H} NMR spectrum (162 MHz, C$_6$D$_6$, 298 K) of [Ru(IMes)(PPh$_3$)(CO)ZnMe] (15).
Figure S21. 31P 1H NMR spectrum (162 MHz, THF-d_8, 298 K) of [Ru(IMes)(PPh$_3$)(CO)ZnMe](15).
Figure S22. 13C-{1H} PENDANT NMR spectrum (101 MHz, C$_6$D$_6$, 298 K) of [Ru(IMes)(PPh$_3$)(CO)ZnMe] (15).

Figure S23. 13C-{1H} DEPTQ NMR spectrum (126 MHz, THF-d_8, 298 K) of [Ru(IMes)(PPh$_3$)(CO)ZnMe] (15).
IMes cyclometallated region (Ru-CH₂):

Figure S24. 1H-13C HSQC spectra (THF-d_8, 298 K) of [Ru(IMes)(PPh₃)(CO)ZnMe] (15).
IMes cyclometallated region (Ru-CH$_2$):

Figure S25. NOESY NMR spectra (400 MHz, THF-d_8, 298 K) of [Ru(IMes)(PPh$_3$)(CO)ZnMe] (15). The exchange peaks are labelled.
[Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16). The slow, dropwise addition of ZnMe₂ (0.60 mL of 1.2 M in toluene, 0.72 mmol) to a THF (4 mL) solution of [Ru(IMes)(PPh₃)(CO)HCl] (105 mg, 0.143 mmol) brought about a colour change from yellow to dark orange. After stirring for 1 h, the volatiles were removed under vacuum and the residue treated with Et₂O (15 mL). This afforded a yellow precipitate of 16, which was separated and dried in vacuum. Yield 20 mg (17 % yield). ¹H NMR: δH (400 MHz, C₆D₆, 298 K) 7.66-7.55 (m, 6H, PPh₃), 6.99 (br s, 9H, PPh₃), 6.79 (s, 2H, Ar), 6.76 (s, 2H, Ar), 6.18 (s, 2H, NCH=NCH), 2.43 (s, 6H, CH₃), 2.31 (br s, 6H, CH₃), 2.19 (s, 6H, CH₃), -0.51 (s, 3H, ZnCH₃). ³¹P{¹H} NMR: δP (162 MHz, C₆D₆, 298 K) 40.3 (s). Selected ¹³C{¹H} NMR: δC (101 MHz, C₆D₆, 298 K) 200.8 (d, ²JCP = 13 Hz, Ru-CO), 192.2 (d, ²JCP = 95 Hz, Ru-C₃H₃), 134.7 (d, JCP = 11 Hz, PPh₃), 129.3 (d, JCP = 2 Hz, PPh₃), 21.3 (s, CH₃), 19.0 (br s, CH₃), -2.7 (d, ³JCP = 3 Hz, ZnCH₃). IR (KBr, cm⁻¹): 1878 (νCO).

Figure S26. ¹H NMR spectrum (400 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16).

Figure S27. ³¹P{¹H} NMR spectrum (162 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(ZnMe)Cl] (16).
Figure S28. 13C{1H} PENDANT NMR spectrum (101 MHz, C$_6$D$_6$, 298 K) of [Ru(IMes)(PPh$_3$)(CO)(ZnMe)Cl] (16).

Figure S29. 1H NMR spectrum (400 MHz, C$_6$D$_6$, 298 K) of [Ru(IMes)(PPh$_3$)(CO)(H)$_2$ZnMe] (17).
Figure S30. 31P{1H} NMR spectrum (202 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(H)₂ZnMe] (17).

Figure S31. 13C{1H} PENDANT NMR spectrum (126 MHz, C₆D₆, 298 K) of [Ru(IMes)(PPh₃)(CO)(H)₂ZnMe] (17).
Figure S32. 1H-13C HSQC spectrum (THF-d_8, 298 K) of [Ru(IMes)(PPh$_3$)(CO)(H)$_2$ZnMe] (17), with expansion of the cyclometallated (Ru-CH$_2$) region.