Electronic Supporting Information

Intrinsic Hydrogen Evolution Capability and Theoretically Supported Reaction Mechanism of Paddlewheel-type Dirhodium Complex

Yusuke Kataoka, a) Natsumi Yano, a) Makoto Handa, a) and Tatsuya Kawamoto b) a)

a) Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
E-mail: kataoka@riko.shiamne-u.ac.jp

b) Department of Chemistry, Faculty of Science, Kanagawa University
2946, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
E-mail: kaw@kanagawa-u.ac.jp
Figure S1. Total amount of hydrogen evolution at 12 h of irradiation versus concentration of H$_2$O (n mL) in the AP system. Here, the AP systems comprise 0.50 mM [Ir-PS-1], 50.0 µM [I(H$_2$O)$_3$], 0.5 mL TEA, n mL H$_2$O, and 9.5 – n mL THF.
Figure S2. Total amounts of hydrogen evolution at 12 h of irradiation versus concentration of [Ir-PS-1] in the AP system. Here, the AP systems comprise 0.10 – 0.60 mM [Ir-PS-1], 50.0 µM [1(H2O)₂], 0.5 mL TEA, 3.0 mL H2O, and 6.5 mL THF.
Figure S3. Total amount of H₂ evolution at 12 h of irradiation versus concentration of [1-(H₂O)₂].

The AP systems comprise 0.50 mM [Ir-PS-1], 5 - 150 µM [1(H₂O)₂], 0.5 mL TEA, 3.0 mL H₂O, and 6.5 mL THF. Here, we denoted “Appearance TON” (●) and “Realistic TON” (■). The former is total amount of hydrogen evolution (raw data) catalyzed by [1(H₂O)₂] with the AP system, and the later is the calculated amount of hydrogen evolution, which is subtracted total amount of hydrogen evolution catalyzed by the AP system without [1(H₂O)₂] from observed amount of hydrogen evolution catalyzed by [1(H₂O)₂] with AP system (raw data).
Figure S4. Absorption spectra of (a) [Ir-PS-1] and (b) [1(H2O)2] in THF/H2O (7:3).
Figure S5. (a) Emission spectra and (b) decays of [Ir-PS-1] and [Ir-PS-3] in THF/H₂O (7:3).
Figure S6. Emission spectra and Stern-Volmer plots of [Ir-PS-1] quenched by TEA ((a) and (c)) and [1(H₂O)₂] ((b) and (d)), respectively, in the THF/H₂O (7:3) solution.
Figure S7. CV of [Ir-PS-n] (1.0 mM) in DMF containing the TBAPF$_6$ as a supporting electrolyte.
Figure S8. LUMO of the [H-1].

Figure S9. Molecular structures of possible [2H-1] intermediates. (a) Side-on structure and (b) top-on structure.
Table. S1. Total amount of H$_2$ evolution and TON of catalysis using AP system containing [Ir-PS-1] (0.50 mM), [1(H$_2$O)$_2$] (5.0 µM), and 1:6:13 (v/v/v) of the TEA/H$_2$O/organic solution (10.0 mL) after 12 h photo-irradiation.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>H$_2$ evolution (µmol)</th>
<th>TON (per Rh ion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF</td>
<td>385.7</td>
<td>3857</td>
</tr>
<tr>
<td>DMF</td>
<td>344.3</td>
<td>3443</td>
</tr>
<tr>
<td>Acetone</td>
<td>356.9</td>
<td>3569</td>
</tr>
<tr>
<td>DMSO</td>
<td>16.6</td>
<td>166</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>23.8</td>
<td>238</td>
</tr>
</tbody>
</table>