Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2018

Energy & Environmental Science

COMMUNICATION

A new approach for sustained and efficient H₂ photoproduction by *Chlamydomonas reinhardtii*

Sergey Kosourov*, Martina Jokel, Eva-Mari Aro and Yagut Allahverdiyeva*

Electronic supplementary information (ESI)

Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland. *Corresponding authors: Dr. Sergey Kosourov, e-mail: <u>serkos@utu.fi</u>, tel: +358451577800; Dr. Yagut Allahverdiyeva, e-mail: <u>allahve@utu.fi</u>, tel: +358503506181. **Figure S1**. Photochemical activity in the wild-type *Chlamydomonas reinhardtii* culture exposed to a train of 1 s light pulses interrupted by 9 s dark periods. Before measurements, cell suspensions at around 14 µg mL⁻¹ Chl (a + b) were dark adapted for 10 min in the gas tight cuvette under either Ar or air atmosphere. A train of saturating white light pulses (~500 µmol photons m⁻² s⁻¹) was provided with the pulse amplitude modulated fluorometer (Dual-PAM-100, Walz). Arrows indicate the points for switching on / off the measuring light. Algal suspension was stirred throughout the experiment. In the case of anaerobic incubation, the presence of H₂ gas in the headspace of the cuvette was confirmed with a GC.

Figure S2. H_2 photoproduction and O_2 evolution in algal cultures exposed to continuous light. The cultures were treated with different amounts of 1 s light pulses (420 µmol photons m⁻² s⁻¹) interrupted by 9 s dark periods (shown as a number of cycles), dark-adapted for 2 minutes, and then continuous light of the same intensity was applied. The arrows indicate the points of continuous light application.

Figure S3. Mass spectrometric simultaneous monitoring of H_2 , O_2 and CO_2 exchange in algal cultures exposed to a train of 1 s light pulses (420 μ mol photons m⁻² s⁻¹) interrupted by 3 s dark periods.

Figure S4. Evaluation of light energy to H_2 energy conversion efficiency (LHCE) of the pulse-illuminated *C. reinhardtii* cultures. 10 ml algal suspensions with the total Chl content of about 18 mg L⁻¹ were exposed to a train of 1 s light pulses (35.11 W m⁻² PAR) interrupted by 9 s dark periods under Ar atmosphere. The LHCEs were calculated for the maximum rate of H_2 photoproduction (red line) and for the 54 h production period using eqn (1). 35.11 W m⁻² corresponds to 180 µmol photons m⁻² s⁻¹ white light at the surface of the suspension culture.

$$\eta (\%) = 100 \frac{\left(\Delta G^o - RT \ln\left(\frac{P^o}{P}\right)\right) V_H}{E_s t A}$$
(1)

where ΔG^o is the change of the standard Gibb's free energy for the water-splitting reaction (237,200 J mol⁻¹ at 25°C and 1 atm), *R* is the universal gas constant, *T* is the absolute temperature, *P*^o and *P* are the standard and observed H₂ pressures (atm), V_H is the amount of H₂ photoproduced (mol), *E*_s is the energy of the incident light radiation (J m⁻² s⁻¹), *A* is the illuminated surface area (m²) and *t* is a sum of illumination periods (s).

(A) Original H₂ photoproduction data

(B) Parameters and final efficiencies

	Max. rate	H ₂ yield (54 h)
V _H (mol):	4.20134E-6	3.26347E-5
<i>P</i> (atm):	0.0028	0.0133
A (m⁻²):	0.002178	0.002178
<i>E_s</i> (J m ⁻² s ⁻¹):	35.11	35.11
<i>t</i> (s):	720	19440
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1.7	0.5
₩(22) *:	2.2	0.63

* \square dalculated for the upper H₂ gas combustion energy (Δ Hc) of 285.8 kJ mol⁻¹.