Supplementary Tables

Table S1: Compositions of synthesized compounds, as indicated by atomic ratios measured by ICP.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Target ratio Li : Mn : V : F</th>
<th>Measured ratio Li : Mn : V : F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-LMVO</td>
<td>1.143 : 0.286 : 0.572 : 0</td>
<td>1.155 : 0.268 : 0.571 : 0</td>
</tr>
<tr>
<td>ST-LMVF20</td>
<td>1.171 : 0.343 : 0.486 : 0.2</td>
<td>1.180 : 0.329 : 0.461 : 0.213</td>
</tr>
<tr>
<td>MR-LMVF20</td>
<td>1.133 : 0.400 : 0.467 : 0.2</td>
<td>1.141 : 0.405 : 0.474 : 0.204</td>
</tr>
<tr>
<td>LR-LMVF20</td>
<td>1.230 : 0.255 : 0.515 : 0.2</td>
<td>1.236 : 0.252 : 0.518 : 0.204</td>
</tr>
<tr>
<td>LR-LMVO</td>
<td>1.200 : 0.200 : 0.600 : 0</td>
<td>1.211 : 0.198 : 0.590 : 0</td>
</tr>
</tbody>
</table>
Supplementary Figures

Figure S1: Computed phase diagram of the MnO-Li$_3$NbO$_4$-LiF and MnO-Li$_2$TiO$_3$-LiF systems, marking the previously reported compositions successfully synthesized by high-energy ball-milling. As the reported compositions are stabilized at approximately 1750 °C, we choose stability at 1750 °C as a heuristic for synthetic accessibility by high-energy ball-milling.
Figure S2: XRD refinement and scanning electron microscopy (SEM) imaging of the secondary particles of a. ST-LMVO, b. ST-LMVF20, c. MR-LMVF20, d. LR-LMVF20, e. LR-LMVO.
Figure S3: **a.** TEM and **b.** HRTEM image and **c.** electron diffraction pattern of ST-LMVF20. The TEM image shows that the secondary particle size of the ST-LMVF20 is around 100 nm. The HRTEM image is taken within the dashed-line square area in **a.**, and we can see different oriented fringes, which indicates the particle is polycrystalline. The electron diffraction pattern shows the characteristic diffraction rings of a disordered rock-salt structure, which further proves that the as-synthesized material is a polycrystalline disordered rock-salt.
Figure S4: Galvanostatic voltage profiles for charge–discharge cycles, and associated capacity retention in a., b. ST-LMVF20 (4.6V, 4.2V cutoff), c. ST-LMVO (4.6V), d. MR-LMVF20 (4.6V), e. LR-LMVF20 (4.6V) and f. LR-LMVO (4.6V).
Figure S5: High temperature galvanocycle cycling profile of ST-LMVF20.
Figure S6: Voltage profile of first-charge samples used for XAS characterization.
The DEMS results shown in Figure S7 reveal a noticeable amount of CO$_2$ gas evolution, which can be mainly attributed to the decomposition of surface carbonate as reported previously.1,2 However, this contribution to the overall capacity is small. Renfrew et al.2 point out that surface Li$_2$CO$_3$ oxidation does contribute to the first cycle capacity, but DEMS results by W. H. Kan et al.3 show that CO$_2$ evolution is greatly reduced in the second charge, indicating that Li$_2$CO$_3$ oxidation is for the most part irreversible. In our materials, while there is clearly some Li$_2$CO$_3$ oxidation, its contribution to the overall capacity must be small as we measure highly reversible performance over repeated charge/discharge cycles. The voltage profile of ST-LMVF20 shown in Fig. 3a is mostly unchanged over the first five cycles, with almost no capacity fade and a Coulombic efficiency in excess of 94% even for the first cycle. These findings indicate that any surface Li$_2$CO$_3$ oxidation is small compared to bulk transition metal oxidation as otherwise we would observe much more obvious capacity fade and smaller Coulombic efficiency.
References

