Supplementary information

Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane

Kristof Verbeeck¹*, Lukas C. Buelens²*, Vladimir V. Galvita²⁺, Guy B. Marin², Kevin M. Van Geem², Korneel Rabaey¹⁺

¹Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium

² Laboratory for Chemical Technology, Ghent University, Technologiepark-Zwijnaarde 914, B-9052 Gent, Belgium

* equal contribution

List of Tables

Table S1. Main technical design data

Biogas yield (Nm ⁻³ biogas kg ⁻¹ fresh matter)		
Energy crops	210	
Agricultural residues	100	
Organic fraction municipal solid waste	100	
Sewage sludge	80	
Food waste	210	
Manure	28	
Biogas production rate (Nm ³ h ⁻¹)	1 000	
Energy density methane (kWh Nm ⁻³)	10.85	
Energy density biogas (kWh Nm ⁻³)	6.50	
Mass density biogas (kg Nm ⁻³)	1.22	
Energy density biogas (MWh ton ⁻¹ biogas)	5.33	
Raw biogas composition		
CH₄ content (vol.%)	60	
O₂ content (vol.%)	0.1	
N ₂ content (vol.%)	0.4	
H₂S content (ppmv)	50	
CO ₂ content (vol.%)	39.5	

Table S2. Feed and product flow rates for super-dry reforming (SDR), dry reforming of methane (DRM) and sorption	-enhanced
steam reforming of methane (SESR).	

	Feed (ton day ⁻¹)			Product (ton day ⁻¹)				Energy input		
Case	CH_4 ^a	CO ₂	CO ₂ H ₂ O CO H		CO H ₂ CO ₂ H ₂		H ₂ O	(GJ ton ⁻¹ CH ₄)	(GJ ton ⁻¹ CO ₂)	
SDR	176	1455	-	1234	-	-	396	21.0	2.55	
DRM	176	485	-	617	44	-	-	16.3	5.94	
SESR	176	-323	397	-	88	808	-	15.8	-	

^a The feed flow rate of CH₄ corresponds with 6000 Nm³ h⁻¹ (which in turn corresponds with 10000 Nm³ h⁻¹ biogas or about 10 large scale AD plants).

Table S3. Biogas production cost compared to average and extreme reference systems

Biogas production cost	Average	Min	Max
Feedstock cost (€ ton ⁻¹) ^a	4.91	2.00	50.00
Capital investment (€) ^b	4 000 000	3 500 000	4 500 000
CAPEX (€ year-1) ^c	305 000	266 875	343 125
OPEX (€ year ⁻¹) ^d	300 000	175 000	450 000
Biogas production (MWh year ⁻¹) ^e	57 052	57 052	57 052
Production cost (€ MWh ⁻¹)	21.4	9.8	41.1
Production cost (€ ton ⁻¹ biogas) ^f	114.4	52.2	219.0

^a Assumed that every substrate represents 20 % of the total biogas production. Assumed transport cost is 2.8 \in ton⁻¹. Only maize silage was assumed to have a feedstock cost (30 \in ton⁻¹). ¹

^b Assumed investment: 3000 (Min), 4000 (Avg) and 5000 (Max) € Nm⁻³ h⁻¹ installed biogas capacity. Investment without investment subsidy or support.

^c Calculated according to the annuity method with an interest of 5% and 20 years depreciation.

^d Assuming 5 % (Min), 7.5% (Avg) and 10 % (Max) of the total investment.

^e Assumed methane content is 60 vol.% (Calculated under the assumption that no plant shutdown occurs).

^f Assuming 4.91 MWh ton⁻¹ biogas.

Table S4. Power and heat production cost contributions

Power and heat production cost	Average	Min	Max
Installed power (kW _e)	2500	2500	2500
Efficiency (%)			
Electricity	35	35	35
Heat	45	45	45
Capital investment (€) ^a	1 250 000	1 000 000	1 500 000
CAPEX (€ year⁻¹) ^b	231 250	185 000	277 500
OPEX (€ year ⁻¹) ^c	100 000	50 000	200 000
Production cost (€ MWhe ⁻¹)	17	12	24
Production cost (€ ton ⁻¹)	31.0	22.0	44.6

 a Assumed investment in the CHP plant is 500 $\pounds\,kW_e^{-1.2}$

^b Depreciation period of 5 years for the engine and 10 years for other installations. Engines represent approximately 35% of the investment.

^c Assuming 20 € kW_e⁻¹ (Min), 40 € kW_e⁻¹ (Avg) and 100 € kW_e⁻¹ (Max).

Biomethane composition	PW/S ^a	PSA ^b	AS ^c	GP^d
Volume flow (Nm ³ h ⁻¹)	606.2	606.2	618.3	615.5
CH₄ content (vol.%)	97	97	97	97
O ₂ content (vol.%)	0.47	0.07	0.16	0.08
N ₂ content (vol.%)	1.57	0.33	0.65	0.65
H ₂ S content (ppmv)	0.68	0.26	0.44	0.33
CO ₂ content (vol.%)	0.96	2.6	2.19	2.28
Technical parameters of biogas upgrading plant	PWS	PSA	AS	GP
Methane slip (vol.%)	2	2	0.04	0.5
Biomethane pressure (bar)	8	7	1	6
Technical parameters of grid injection	PWS	PSA	AS	GP
Length of biomethane pipeline (m)	100	100	100	100
Gas grid pressure (bar)	14	14	14	14

Table S5. Biomethane composition and technicalities of the gas upgrading unit and additional components for the different upgrading techniques

^a PWS = pressurized water scrubbing

^b PSA = pressurized swing adsorption

^cAS = amine scrubbing

^d GP = gas permeation

	Foster Wheeler, 2013 ³	Salkuyeh, 2017 ⁴	Compagnoni, 2017 ⁵
Reforming process	SRM ^a	SRM ^a	SRE ^b
Plant capacity (ton CH ₄ day ⁻¹)	553°	1814	55 ^c
Capital investment (M€) ^d	85.7	217	16.2
Depreciation time (years) ^e	15	15	30
Interest (%) ^f	5	5	5
Percentage of time on stream (%) ^g	95	95	96
CAPEX (M€ year ⁻¹) ^h	8.00	20.3	0.946
CAPEX (k€ day⁻¹)	21.9	55.5	2.59
CAPEX (€ ton ⁻¹ CH₄)	41.8	32.2	49.0

Table S6. Estimated CAPEX contribution to reforming processes.

^a Steam reforming of methane (SRM)

^b Steam reforming of ethanol (SRE)

^c The reported plant capacity in terms of H₂ production was converted into CH₄ processing capacity by assuming a 3.1 mol_{H2} mol_{CH4}⁻¹ yield (based on our Aspen Simulations for SESR).

^d The conversion factor between US\$ and € was obtained from https://www.statista.com/statistics/412794/euro-to-u-sdollar-annual-average-exchange-rate/ taking into account the year of publication of the source data.

^e The depreciation time was assumed 15 years in case it was not specified in the reference.

^f The interest on capital investment was assumed to be 5%.

^g Percentage of the time on stream is assumed 95% in case it was not specified in the reference.

^h Calculated according to the annuity method taking into account the specific depreciation time and interest.

Table S7. Overview of fuels, raw chemicals, bulk chemicals and other chemicals and their global production volume/capacity as well as the amount of carbon involved. The amount of CO that would be necessary to meet the production volume/capacity according to the reaction scheme of paragraph 2.3.3. Error! Reference source not found. is determined and linked to the amount of CO₂ that can be converted by SDR.

Fuels and	raw chemicals	Mt year ⁻¹	Mt C year ⁻¹	Mt CO year ⁻¹	Mt CO ₂ year ^{-1 b}	%BMPP ^c	%SCE ^d	Year
Co	al production ⁶	7860	2360-6680 ^e					2015
Oil	l production ⁶	4400	3740	8800	10370	265	49	2015
Na	tural gas production ⁶	2870	2190					2015
		15130	8290-12610	8800	10370	265	49	
Bulk chem	icals							
Eth	hylene ^{7a}	154	132	308	363	9.3	1.73	2013
Pro	opylene ^{7a}	148	127	296	349	8.9	1.66	2013
	Olefins (via MTO process) ⁸	11	9.4	22	26	0.7	0.13	2014
Eth	hanol ⁹	68	35.4	82.5	98	2.5	0.46	2011
Me	ethanol ^{7a}	98	37	86	101	2.6	0.48	2013
Me	ethanol ¹⁰	55	20.6	48	56	1.4	0.27	2013
Fo	rmaldehyde ¹¹	30	12	28	33	0.8	0.16	2016
Ac	etic acid ¹²	6.5	1.3	3	4	0.1	0.02	2013
		560	365	852	1004	25.6	4.8	
Other che	micals							
Ph	osgene 13	3	0.37	0.86	1.05	0.03	0.005	2014
Ac	etaldehyde ¹⁴	1	0.30	0.60	0.71	0.02	0.003	2006
Ро	lycarbonate 10	4	0.14	0.34	0.40	0.01	0.002	2014
Dir	methylcarbonate 15	0.4	0.053	0.13	0.15	0.004	0.001	2014
		8.4	0.86	1.9	2.31	0.06	0.011	

^a Global "capacity" is reported rather than the actual production volume

^b Amount of CO₂ that can be converted into CO to meet the demand of chemicals/fuels when considering reaction stoichiometry of SDR: 1CH₄ + 3CO₂ = 4CO + 2H₂O

^c Percentage of the global biomethane production potential (assumed 658 Mt biomethane year⁻¹) necessary to provide CO for chemicals/fuels production by SDR, taking into account CH₄ necessary for providing process heat. The current production reaches around 3.5% of this production potential.

^d Percentage of stationary CO₂ emission sources (estimation for 2015) that could be valorized by production of chemicals/fuels, taking into account that 1 mol CH₄ and 3 mol CO₂ are converted into 4 mol CO according to reaction stoichiometry.

^e The reported range of Mt C/year originates from the highly variable carbon content of coal (ranging from 30 to 86 w% carbon).

List of Figures

Figure S1. Specific raw biogas production cost in € ton⁻¹ biogas for 6 different feedstocks, and for co-digestion of the 6 substrates (every substrate represents 1/6th of the total biogas production).

Figure S2. Flowsheet used for Aspen Plus simulation of biomethane conversion to CO, syngas or H₂. (HX1: shell-tube heat exchanger, HX2: heat exchanger, REACTOR: RYield reactor.)

Figure S3. Pie chart representing the contributions (percentual and in € ton⁻¹ CH₄) that constitute the consumer price of natural gas for industrial end-users in 2015 (average for EU-28, 2015). Values are based on a report made by the European Commission¹⁶.

Figure S4. Contributions to global CO₂ emissions: blue contributions constitute large stationary point sources, while orange and brown contributions constitute mobile sources as well as small stationary point sources. ¹⁷

Figure S5. The impact of the upgrading technology on the overall biogas upgrading cost (PWS = pressurized water scrubbing; PSA = pressurized swing adsorption).

Figure S6. Energy duty for heat exchanger HX1 (top light green), HX2 (lower dark green) and reforming reactor (middle green) in the CO production (SDR), syngas production (DRM) and H₂ production (SESR) case. The solid black line represents the net heat input, the sum of the energy duty for heat exchanger HX2 and the reactor.

Figure S7. Economic analysis for the production of chemicals from biomethane or natural gas. Effect of CH₄ price (A), required energy input (B), CO price (C), H₂ price (D), CO₂ price (E) and CO₂ tax (F) on calculated profit. Circles – super-dry reforming process (SDR); Diamonds – dry reforming of methane (DRM); Triangles – sorption-enhanced steam reforming of methane (SESR). Full symbols and full lines (blue) represent margin of the case studies with biomethane as source of CH₄, while hollow symbols and dashed lines (red) represent the margin of the case studies with natural gas (NG) as source of CH₄ in an EU context.

References

- 1. D. Balussou, A. Kleyböcker, R. McKenna, D. Möst and W. Fichtner, *Waste and Biomass Valorization*, 2012, **3**, 23-41.
- 2. M. Lantz, *Applied Energy*, 2012, **98**, 502-511.
- 3. L. Bressan and C. Davis, *Driving down costs in hydrogen production, Processing Shale Feedstocks, Foster Wheeler*, 2013.
- 4. Y. Khojasteh Salkuyeh, B. A. Saville and H. L. MacLean, *International Journal of Hydrogen Energy*, 2017, **42**, 18894-18909.
- 5. M. Compagnoni, E. Mostafavi, A. Tripodi, N. Mahinpey and I. Rossetti, *Energy & Fuels*, 2017, **31**, 12988-12996.
- 6. *World Energy Resources*, World Energy Council, 2016.
- 7. A. Boulamanti and J. A. Moya, *Renewable and Sustainable Energy Reviews*, 2017, **68**, 1205-1212.
- 8. P. Tian, Y. X. Wei, M. Ye and Z. M. Liu, *ACS Catal.*, 2015, **5**, 1922-1938.
- 9. L. Canilha, R. d. C. L. B. Rodrigues, F. A. F. Antunes, A. K. Chandel, T. S. d. S. Milessi, M. d. G. A. Felipe and S. S. d. Silva, in *Sustainable Degradation of Lignocellulosic Biomass Techniques, Applications and Commercialization*, eds. A. K. Chandel and S. S. d. Silva, InTech, Rijeka, 2013, DOI: 10.5772/53832, p. Ch. 02.
- M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell, *Energy & Environmental Science*, 2014, **7**, 130-189.
- 11. A. M. Bahmanpour, A. Hoadley, S. H. Mushrif and A. Tanksale, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 3970-3977.
- 12. S.-T. Yang, H. El-Ensashy and N. Thongchul, *Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers*, John Wiley & Sons, Hoboken, New Jersey, 2013.
- 13. N. B. Jakobsson, B. Hinnemann, F. C. Pedersen and N. C. Schjødt, *A process for safe production of phosgene, WO2015189064A1*, 2015.
- M. Eckert, G. Fleischmann, R. Jira, H. M. Bolt and K. Golka, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, DOI: 10.1002/14356007.a01_031.pub2.
- O. d. Q. F. Araújo, J. L. d. Medeiros and R. M. B. Alves, in *CO2 Sequestration and Valorization*, eds. C. d. R. V. Morgado and V. P. P. Esteves, InTech, Rijeka, 2014, DOI: 10.5772/57560, p. Ch. 02.
- 16. *Energy prices and costs in Europe*, European Commision, Brussels, 2016.
- 17. IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.