Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

Plastic waste as a feedstock for solar-driven H₂ generation

Taylor Uekert,^a Moritz F. Kuehnel,^{a,b*} David W. Wakerley,^a and Erwin Reisner^{a*}

- a Christian Doppler Laboratory for Sustainable SynGas Chemistry Department of Chemistry University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK http://www-reisner.ch.cam.ac.uk
- b Department of Chemistry Swansea University, College of Science Singleton Park SA2 8PP, UK https://moritz-kuehnel.com
- Corresponding author emails:
 Prof. Erwin Reisner: reisner@ch.cam.ac.uk
 Dr. Moritz F. Kuehnel: m.f.kuehnel@swansea.ac.uk

Experimental Section

Reagents. Chloroplatinic acid (8 wt%), ethylene glycol, L-(+)-lactic acid, polycarbonate (pellets, M_W 45,000), polyethylene glycol (M_W 1,500) polymethyl methacrylate (M_W 350,000) polypropylene (amorphous), polystyrene (pellets, M_W 35,000), polyvinylpyrrolidone (powder, M_W 55,000), and sulfur were purchased from Sigma-Aldrich and used without further purification. Low density polyethylene (powder, 300 µm), polyethylene terephthalate (PET, powder, 300 µm), polylactic acid (PLA, pellets, 3 mm), polyurethane (PUR, foam, $10 \times 100 \times 100$ mm³, density 0.08 g cm⁻³), and polyvinyl chloride (powder, 250 µm) were obtained from Goodfellow Cambridge Ltd. Polylactic acid and polyurethane were frozen with liquid N₂ and then ground in a coffee grinder to powders of approximately 900 and 1400 µm grain size (polydispersity index of 0.73 and 0.86), respectively, as determined via dynamic light scattering. NaOD (40 wt% in D₂O) (99.96 atom% D) was obtained from Euriso-Top, and TiO₂ nanoparticles (P25, 10-30 nm) were purchased from SkySpring Nanomaterials, Inc. A plastic water bottle (still Scottish mountain water) was purchased from Marks and Spencer Simply Food (Station Road, Cambridge CB1 2JW, UK), dried and ground using a coffee grinder into pieces $\leq 1 \text{ cm}^2$.

Synthesis of oleic-acid-capped CdS quantum dots (CdS-OA QDs). CdS-OA QDs were synthesised following a literature procedure reported previously.¹

Ligand-free CdS quantum dots (CdS-BF₄**)**. Ligand-free CdS QDs were synthesised using a literature procedure reported previously.² The particle sizes and concentrations of the CdS-OA and CdS-BF₄ QDs were determined using a UV-Vis procedure based on the position and size of the absorption maximum.³

Substrate pre-treatment. 25-50 mg mL⁻¹ of the substrate of interest in 10 M aq. NaOH was incubated at 40 °C with stirring at 500 rpm for 24 h in air. After cooling to room temperature, the mixture was centrifuged at 6500 rpm for 3 min. The supernatant was then extracted for use and, if necessary, filtered through a Millex 13 mm nylon membrane filter with a pore size of 20 μ m.

Photocatalytic generation of H₂ with CdS QDs. 1 nmol of QDs were transferred to a Pyrex glass photoreactor vial and the solvent removed under vacuum with stirring. For all optimised experiments, CdS-OA was used with PET, and CdS-BF₄ with PLA and PUR. For experiments *without* pre-treated substrate, the substrate of interest and 2 mL of 10 M aq. NaOH were added. For experiments *with* pre-treated substrate, 2 mL of the pre-treated supernatant were added. In both cases, the vials were capped with rubber septa. After briefly vortexing, the samples were purged

S1

with N₂ (containing 2% CH₄ for gas chromatographic analysis, see below) for 10 min. The samples were then irradiated by a solar light simulator (Newport Oriel, 100 mW cm⁻²) equipped with an air mass 1.5 global filter (AM 1.5G) and a water filter to remove infrared radiation. All samples were stirred at 600 rpm and kept at a constant temperature of 25 °C during irradiation. H₂ generation was monitored periodically by analysing samples of the reactor head space gas (50 μ L) by gas chromatography.

Photocatalytic generation of H₂ with Pt/TiO₂. 10 mg of P25-TiO₂ nanoparticles, or 10 mg of P25-TiO₂ nanoparticles with chloroplatinic acid solution (for a final Pt concentration of 5 wt%), were transferred to a Pyrex glass photoreactor vial and combined with the polymer of interest and 2 mL of 10 M aq. NaOH. All purging, irradiation and gas measurement parameters were kept identical to those described above.

Dynamic light scattering (DLS). DLS measurements of PET, ground PLA and ground PUR in water were completed using a Malvern Zetasizer.

UV-Vis spectroscopy. UV-Vis spectra were recorded on a Varian Cary 50 UV-Vis spectrophotometer using quartz glass cuvettes (1 cm path length).

Scanning electron microscopy (SEM). SEM was conducted on a TESCAN MIRA3 FEG-SEM. Samples were sputter-coated with a 10 nm layer of platinum prior to microscopy.

Transmission electron microscopy (TEM). TEM was conducted on a FEI Philips Tecnai 20. Samples were dropcast onto carbon-coated Cu TEM grids and dried under vacuum before use.

Gas analysis. The accumulation of H_2 was measured via gas chromatography on an Agilent 7890A gas chromatograph equipped with a thermal conductivity detector and HP-5 molecular sieve column using N_2 as the carrier gas. Methane (2% CH₄ in N_2) was used as an internal standard after calibration with different mixtures of known amounts of $H_2/N_2/CH_4$.

Treatment of data. All analytical measurements were performed in triplicate, unless otherwise stated, and are given as the unweighted mean ± standard deviation (σ). The activity per weight of catalyst (mmol_{H2} g_{CdS}⁻¹) and σ were calculated using Eq. S1 and S2, respectively.

Activity
$$\left(\text{mmol}_{\text{H}_2}\text{g}_{\text{CdS}}^{-1}\right) = \frac{n_{\text{H}_2}}{\frac{4}{3}\pi r_{\text{CdS}}^2 N_{\text{A}} \rho_{\text{CdS}} n_{\text{QD}}} \times 1000$$
 [Eq. S1]
$$\sigma = \sqrt{\frac{\Sigma(x \cdot \bar{x})^2}{n \cdot 1}}$$
 [Eq. S2]

Where: $n_{H_2} - H_2$ produced (mol),

r_{CdS} – QD radius (cm),

 ρ_{CdS} – CdS density (4.84 g cm⁻³),

 $N_{\rm A}$ – Avogadro's constant (mol⁻¹),

 $n_{\rm QD}$ – number of moles of QD (mol),

n – number of repeated measurements,

x – value of a single measurement,

 \overline{x} – unweighted mean of the measurements.

The calculated values for mmol_{H2} g_{cds}^{-1} were divided by the irradiation time in order to calculate mmol_{H2} g_{cds}^{-1} h⁻¹. σ was increased to 5% of \bar{x} in the event that the calculated σ was below this threshold.

External quantum yield (EQY) determination. 1 nmol of QDs was added to a quartz cuvette (1 cm path length) and the solvent removed under vacuum with stirring. Either 25-50 mg mL⁻¹ of the substrate of interest in 10 M aq. NaOH (2 mL) *or* 2 mL of pre-treated solution were added to the cuvette, which was then sealed with a rubber septum. The sample was purged with N₂ containing 2% CH₄ for 10 min. The solution was next activated via 1 h of illumination in a solar light simulator (Newport Oriel, 100 mW cm⁻²) equipped with an air mass 1.5 global filter (AM 1.5G) and a water filter to remove infrared radiation. After a second round of N₂ purging, the sample was irradiated by a Xe lamp (LOT LSH302) fitted with a monochromator (LOT MSH300) focused at a single wavelength of λ = 430 nm (accurate to a full-width at half-maximum of 5 nm). The light intensity was adjusted to between 800-1800 µW cm⁻², as measured with a power meter (ILT 1400, International Light Technologies). The cuvette was irradiated across an area of 0.28 cm². The evolved headspace gas was analysed by gas chromatography and the EQY (%) calculated using Eq. S3.

EQY (%) = $100 \times \frac{2n_{\text{H}_2} N_{\text{A}} hc}{t_{\text{irr}} \lambda I A}$ [Eq. S3]

Where: n_{H_2} – amount of H₂ generated (mol),

 $N_{\rm A}$ – Avogadro's constant (mol⁻¹),

- h Planck's constant (J s),
- c speed of light (m s⁻¹),
- $t_{\rm irr}$ irradiation time (s),

 λ – wavelength (m),

- I light intensity (W m⁻²),
- A irradiated area (m²).

Stoichiometric conversion calculations. The following procedure was adapted from the literature.^{4,5} Samples with 0.1-0.4 mg mL⁻¹ of substrate in 10 M aq. NaOH (2 mL) were prepared for photocatalysis and irradiated as described above. H₂ was measured after 24 h of irradiation. H₂ substrate⁻¹ (mol mol⁻¹) was plotted against substrate catalyst⁻¹ (g g⁻¹), and a linear fit applied to the data points. The y-intercepts of these linear fits represent the limiting amount of H₂ obtained from 1 mol of substrate (*N*_{lim}). Eq. S4 gives the conversion (%).

Conversion (%) =
$$100 \times \frac{N_{\text{lim}}}{N_{100\%}}$$
 [Eq. S4]

Where: $N_{100\%}$ – ideal amount of H₂ obtainable from 1 mol of substrate (calculated from chemical reactions listed in the main text).

¹H-NMR and ¹³C-NMR spectroscopy. All NMR samples, including polymers before and after photoreforming and pure oxidation intermediates and products, were prepared in 10 M NaOD in D_2O with sample concentrations of 25 mg mL⁻¹. Post-photoreforming polymers were spiked with aliquots (0.2 mL of 25 mg mL⁻¹ substrate in 10 M NaOD in D_2O) of the proposed oxidation products in order to confirm their presence.

Supporting References

- D. W. Wakerley, M. F. Kuehnel, K. L. Orchard, K. H. Ly, T. E. Rosser, and E. Reisner, *Nat. Energy*, 2017, 2, 17021.
- 2 C. M. Chang, K. L. Orchard, B. C. M. Martindale, and E. Reisner, J. Mater. Chem. A, 2016, 4, 2856-2862.
- 3 W. W. Yu, L. Qu, W. Guo, and X. Peng, *Chem. Mater.*, 2003, **15**, 2854-2860.
- 4 T. Shiragami, T. Tomo, H. Tsumagari, R. Yuki, T. Yamashita, and M. Yasuda, *Chem. Lett.*, 2012, **41**, 29-31.
- 5 T. Shiragami, T. Tomo, H. Tsumagari, Y. Ishii, and M. Yasuda, *Catalysts*, 2012, **2**, 56-67.

Abbreviations

- Bottle PET water bottle
- EG ethylene glycol
- LDPE low density polyethylene
- PC polycarbonate
- PEG polyethylene glycol
- PET polyethylene terephthalate
- PLA polylactic acid
- PMMA polymethyl methacrylate
- PS polystyrene
- PUR polyurethane
- PVC polyvinyl chloride
- PVP polyvinyl pyrrolidone
- TA terephthalic acid

Supporting Tables

		-	•	•
CdS Type	Full description	Diameter (nm)	±σ (nm)	Mass of 1 nmol (mg)
F1	Ligand-free CdS QDs, batch 1	5.1	0.2	0.21
01	Oleic acid-capped CdS QDs, batch 1	5.4	0.3	0.24
F2	Ligand-free CdS QDs, batch 2	4.8	0.2	0.17

Table S1. Properties of the CdS QDs used for all screening and optimisation photoreforming studies.

Table S2. Photocatalytic H₂ evolution from polymer substrates in various optimisation studies. 0.5 μ M CdS QDs irradiated for 4 h at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Experiment Details	CdS Type	Substrate	Substrate loading (mg mL ⁻¹)	H2 (mmol g _{sub} -1)	$\pm \sigma$ (mmol g _{sub} ⁻¹)	Activity (mmol _{H2} gcds ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)
	F1	PLA	5	2.27	0.11	27.6	7.1
	F1	PLA	25	0.884	0.140	53.7	6.1
	F1	PLA	50	0.530	0.120	64.3	14.7
Substrate	01	PET	5	0.195	0.100	2.04	0.21
concentration	01	PET	25	0.065	0.025	3.42	0.87
ontimisation	01	PET	50	0.016	0.004	1.68	0.40
	F1	PUR	5	0.000	0.000	0.043	0.005
	F1	PUR	25	0.013	0.003	0.850	0.279
	F1	PUR	50	0.007	0.001	0.891	0.125
	F1	PLA	50	0.530	0.121	64.3	14.7
ligand-free	01	PLA	50	0.146	0.007	15.3	0.8
versus canned	F1	PET	50	0.010	0.001	1.30	0.40
CdS	01	PET	50	0.016	0.004	1.68	0.40
comparison	F1	PUR	50	0.007	0.001	0.891	0.125
	01	PUR	50	0.001	0.000	0.077	0.004

Table S3. Photocatalytic H₂ evolution from polymer substrates and their intermediates. 0.5 μ M CdS QDs irradiated for 4 h at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples, except where stated otherwise.

Experiment Details	CdS Type	Substrate	Substrate loading (mg mL ⁻¹)	H2 (mmol g _{sub} -1)	$\pm \sigma$ (mmol g _{sub} ⁻¹)	Activity (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)	$\pm \sigma$ (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)
	F1	PLA	50	0.530	0.121	64.3	14.7
	01	PET	25	0.065	0.017	3.42	0.87
	01	bottle	25	0.049	0.009	2.57	0.46
	F1	PUR	25	0.013	0.005	0.850	0.279
	F1	PVP ^[b]	50	0.0067	0.0003	0.809	0.006
Substrate	F1	PEG ^[b]	50	0.0058	0.0003	0.754	0.038
survey	F1	LDPE ^[b]	50	0.0008	0.0001	0.127	0.006
	F1	PVC	50	< limit ^[a]		< limit ^[a]	
	F1	PMMA	50	< limit ^[a]		< limit ^[a]	
	F1	PS	50	< limit ^[a]		< limit ^[a]	
	F1	PC	50	< limit ^[a]		< limit ^[a]	
	F1	PLA	50	0.511	0.064	62.1	7.8
	01	PET	25	0.238	0.039	12.4	2.0
	01	bottle	25	0.222	0.046	11.6	2.4
	F1	PUR	25	0.053	0.003	3.22	0.13
Substrate	F1	PVP ^[b]	50	0.034	0.002	4.13	0.21
survey with pre-	F1	PEG ^[b]	50	0.019	0.001	2.27	0.11
treatment	F1	LDPE ^[b]	50	0.0018	0.0001	0.264	0.013
	F1	PVC ^[b]	50	0.0017	0.0001	0.253	0.013
	F1	PMMA ^[b]	50	0.0014	0.0001	0.218	0.011
	F1	PS ^[b]	50	0.0012	0.0001	0.190	0.009
	F1	PC ^[b]	50	0.0011	0.0001	0.178	0.009
	F2	Lactic acid	50	0.290	0.014	39.6	2.0
	01	Ethylene glycol	25	0.131	0.008	6.83	0.43
	01	Tereph- thalic acid	25	0.000	0.000	0.000	0.000
Photo-	F2	Propylene glycol	25	0.219	0.071	15.7	5.1
oxidation intermediates	F2	2,6- diamino toluene	25	0.000	0.000	0.000	0.000
	F2	Acetic acid	25	0.005	0.000	0.124	0.023
	F2	Formic acid	25	0.147	0.030	10.7	2.2
	F2	Pyruvic acid	25	0.000	0.000	0.000	0.000

^[a] Detection limit is 0.0001 mmol g_{sub}^{-1} and 0.016 mmol_{H2} g_{CdS}^{-1} h⁻¹. Single measurements were taken for those marked "< limit" (not detectable).

 $^{\rm [b]}\sigma$ calculated from 2 samples.

Table S4. CdS QD and NaOH concentration optimisation for photocatalytic H₂ evolution from PLA. For CdS optimisation, solution volume was 2 mL of 10 M aq. NaOH with 50 mg mL⁻¹ PLA in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. For NaOH optimisation, solution volume was 2 mL of NaOH with 0.5 μ M CdS F1 QDs and 50 mg mL⁻¹ PLA in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. Irradiation was at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples unless otherwise indicated.

Experiment details	CdS F1 quantity (nmol)	Time (h)	H2 (mmol g _{sub} -1)	±σ (mmol g _{sub} -1)	Activity (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)
	1	4	0.370	0.147	44.9	11.4
CdS	2.5	4	0.641	0.205	31.2	9.9
concentration	5	4	0.695	0.143	16.9	3.5
optimisation	10 ^[a]	4	0.439	0.219	6.24	0.31
Experiment	[NaOH]	Time	H ₂	±σ	Activity	±σ
Details	(M)	(h)	(mmol g _{sub} ⁻¹)	(mmol g _{sub} ⁻¹)	(mmol _{H2} g _{cds} ⁻¹ h ⁻¹)	(mmol _{H2} g _{cds} ⁻¹ h ⁻¹)
Details	(M) 1 ^[a]	(h) 4	(mmol g _{sub} -1) 0.011	(mmol g _{sub} -1) 0.004	(mmol _{H2} g _{cds} ⁻¹ h ⁻¹) 1.63	(mmol _{H2} g _{cds} ⁻¹ h ⁻¹) 0.55
NaOH	(M) 1 ^[a] 2.5 ^[a]	(h) 4 4	(mmol g _{sub} -1) 0.011 0.028	(mmol g _{sub} -1) 0.004 0.008	(mmol _{H2} g _{cd5} ⁻¹ h ⁻¹) 1.63 4.16	(mmol _{H2} g _{cds} ⁻¹ h ⁻¹) 0.55 1.24
NaOH concentration	(M) 1 ^[a] 2.5 ^[a] 5 ^[a]	(h) 4 4 4	(mmol g _{sub} -1) 0.011 0.028 0.121	(mmol g _{sub} -1) 0.004 0.008 0.013	(mmol _{H2} g _{cds} ⁻¹ h ⁻¹) 1.63 4.16 17.5	(mmol _{H2} g _{Cd5} ⁻¹ h ⁻¹) 0.55 1.24 1.9

 $^{[a]}\sigma$ calculated from 2 samples.

Table S5. Photocatalytic H₂ evolution over multiple time points from PLA, PET and PUR without and with pre-treatment. 0.5 μ M CdS QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Experiment details	CdS type	Substrate loading (mg mL ⁻¹)	Time (h)	H2 (mmol g _{sub} ⁻¹)	±σ (mmol g _{sub} -1)	Activity (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{Cds} ⁻¹ h ⁻¹)
			1	0.159	0.044	73.8	21.6
			2	0.341	0.078	82.8	18.8
Long-term PLA	F1	50	3	0.513	0.102	83.0	16.4
photo-			4	0.769	0.384	93.4	4.7
reforming			20	2.91	0.14	70.7	3.5
			22	3.09	0.15	68.2	3.4
			1	0.072	0.020	34.8	9.8
Lona-term pre-			2	0.191	0.055	46.4	13.4
treated PLA	F1	50	3	0.334	0.103	54.0	16.7
photo-			4	0.495	0.126	58.9	15.2
reforming			20	2.59	0.69	63.0	16.8
			22	2.70	0.67	59.5	14.9
			1	0.003	0.001	0.726	0.179
			2	0.019	0.004	2.04	0.38
Long-term PET	01	25	3	0.042	0.009	2.90	0.65
photo-			4	0.065	0.017	3.42	0.87
reforming			20	0.198	0.071	2.02	0.74
			22	0.208	0.040	1 07	0.83
			22	0.200	0.040	1.57	0.85
			1	0.060	0.015	12.5	3.2
Long-term pre-			2	0.146	0.030	15.2	3.1
treated PET	01	25	3	0.208	0.037	14.5	2.6
photo-			4	0.238	0.058	12.4	2.0
reforming			20	0.460	0.058	4.81	0.60
			22	0.488	0.078	4.63	0.74
			1	0.001	0.001	0.396	0.230
			2	0.003	0.002	0.422	0.196
Long-term PUR	F1	25	3	0.007	0.004	0.625	0.344
pnoto-			4	0.013	0.005	0.850	0.279
rejorning			20	0.032	0.013	0.464	0.161
			22	0.039	0.004	0.428	0.045
			1	0.011	0.002	2.56	0.60
Lona-term nre-			2	0.016	0.008	2.00	0.09
treated PUR	F1	25	3	0.041	0.002	3.29	0.17
photo-			4	0.053	0.002	3.22	0.13
reforming			20	0.139	0.012	1.68	0.14
			22	0.143	0.012	1.58	0.13

Table S6. Photocatalytic H₂ evolution over multiple time points from a PET plastic water bottle without and with pre-treatment. 0.5 μ M CdS O1 QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. Different samples were used for the 1-22 h experiments and the 24-144 h experiments, as indicated by the dashed line. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Experiment details	CdS type	Substrate loading (mg mL ⁻¹)	Time (h)	H₂ (mmol g _{sub} ⁻¹)	± σ (mmol g _{sub} -1)	Activity (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)
			1	0.002	0.001	0.473	0.265
			2	0.015	0.003	1.54	0.36
			3	0.033	0.006	2.27	0.42
			4	0.049	0.009	2.57	0.46
			20	0.165	0.021	1.73	0.22
Long-term PET	01	25	22	0.212	0.039	2.01	0.10
bottle photo-			24	0.348	0.017	3.03	0.15
reforming			48	0.532	0.082	2.31	0.36
			72	0.786	0.079	2.28	0.22
			96	0.890	0.045	1.94	0.10
			120	1.00	0.05	1.75	0.09
			144	1.12	0.06	1.63	0.08
			1	0.053	0.013	11.0	2.6
			2	0.112	0.023	11.7	2.4
			3	0.174	0.041	12.1	2.8
			4	0.222	0.046	11.6	2.4
long-term nre-			20	0.592	0.058	6.19	0.61
treated PFT	01	25	22	0.610	0.070	5.80	0.66
bottle photo-			24	0.474	0.046	4.13	0.40
reforming			48	0.796	0.124	3.47	0.54
, ,			72	1.03	0.12	2.98	0.34
			96	1.12	0.13	2.44	0.28
			120	1.26	0.14	2.20	0.24
			144	1.34	0.19	1.94	0.27

Table S7. External quantum yield (EQY) measurements from photoreforming of polymers. 0.5 μ M CdS QDs irradiated with monochromatic light (λ = 430 nm, full-width at half maximum: 5, intensity taken as the average of the intensities measured at the beginning and end of the experiments) with 2 mL 10 M aq. NaOH and substrates as defined below. Experiments were conducted in a sealed quartz cuvette (path length 1 cm) with an internal volume of 3.83 mL under anaerobic conditions. The sample was irradiated over an area of 0.28 cm². σ is the standard deviation calculated from the 3 listed samples.

Substrate	Substrate Conditions	CdS Type	Time (h)	Light Intensity (mW cm ⁻²)	H₂ (µmol)	EQY (%)	Average EQY (%)	±σ (%)
PLA	50 mg mL ⁻¹	F2	24	0.8 ± 0.1 1.3 ± 0.2 1.0 ± 0.1	5.75 8.48 8.39	15.1 15.0 15.0	15.0	0.7
PET	25 mg mL ⁻¹ , pre-treated	01	24	0.8 ± 0.1 1.0 ± 0.1 1.3 ± 0.3	1.57 0.81 1.88	4.26 3.62 3.33	3.74	0.34
PUR	25 mg mL ⁻¹ , pre-treated	F2	24	1.1 ± 0.1 1.2 ± 0.1 0.9 ± 0.1	0.055 0.067 0.082	0.11 0.12 0.19	0.14	0.03
PET bottle	25 mg mL ⁻¹ , pre-treated	01	24	1.0 ± 0.1 1.5 ± 0.2 0.9 ± 0.1	0.830 1.60 0.845	1.91 2.45 2.16	2.17	0.38

Table S8. Control studies of photocatalytic H₂ evolution from CdS *without* substrates. 0.5 μ M CdS O1 QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Experiment Details	CdS Type	Substrate	Substrate loading (mg mL ⁻¹)	Time (h)	H₂ (µmol)	±σ (µmol)	Activity (mmol _{H2} g _{Cds} ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)
				1	0.011	0.005	0.006	0.003
				2	0.021	0.009	0.006	0.003
				3	0.032	0.014	0.006	0.003
	F2	none	n/a	4	0.043	0.019	0.006	0.003
				20	0.289	0.083	0.008	0.002
				22	0.303	0.086	0.007	0.002
				24	0.317	0.089	0.007	0.002
				1	0.000	0.000	0.000	0.000
				2	0.000	0.000	0.000	0.000
No substrate				3	0.000	0.000	0.000	0.000
				4	0.000	0.000	0.000	0.000
				20	0.000	0.000	0.000	0.000
	01	nono	n/2	22	0.000	0.000	0.000	0.000
	01	none	ny a	24	0.007	0.001	trace [a]	trace
				48	0.011	0.002	0.002	0.000
				72	0.034	0.010	0.002	0.000
				96	0.045	0.005	0.002	0.001
				120	0.059	0.009	0.002	0.000
				144	0.062	0.014	0.002	0.000

^[a] "Trace" indicates a value nearly equivalent to the detection limit of 0.0016 mmol_{H2} g_{CdS}^{-1} h⁻¹.

Table S9. Control studies for photocatalytic H₂ evolution from PLA, PET and PUR. 0.5 μ M CdS O1 QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Experiment Details	CdS Type	Substrate	Substrate loading (mg mL ⁻¹)	Time (h)	H2 (mmol g _{sub} -1)	$\pm \sigma$ (mmol g _{sub} ⁻¹)	Activity (mmol _{H2} g _{cdS⁻¹} h ⁻¹)	± σ (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)
	F2	PLA	50	4	0.000	0.000	0.000	0.000
				20	0.000	0.000	0.000	0.000
	01	PET	25	4	0.000	0.000	0.000	0.000
No light				20	0.000	0.000	0.000	0.000
	F2	PUR	25	4	0.000	0.000	0.000	0.000
				20	0.000	0.000	0.000	0.000
	none	DI A	50	1	0.000	0.000	0.000	0.000
	none	FLA	50	20	0.000	0.000	0.000	0.000
No catalyst	none	PFT	25	20	0.000	0.000	0.000	0.000
	none		23	20	0.000	0.000	0.000	0.000
	none	PUR	25	4	0.000	0.000	0.000	0.000
	none		20	20	0.000	0.000	0.000	0.000
	F2	PLA	50	4	0.395	0.091	48.0	11.1
				20	1.80	0.77	43.9	18.8
Irradiated	01	PET	25	4	0.062	0.018	3.25	0.96
with λ > 400				20	0.228	0.053	2.38	0.55
nm filter	F2	PUR	25	4	0.003	0.001	0.224	0.071
				20	0.013	0.005	0.224	0.053

Table S10. Photocatalytic H₂ evolution from TiO₂. 20 mg P25-TiO₂ nanoparticles, with or without 5 wt% Pt, irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples. No pre-treatment was performed.

Experiment Details	Co- catalyst	Substrate	Substrate loading (mg mL ⁻¹)	Time (h)	H2 (mmol g _{sub} ⁻¹)	$\pm \sigma$ (mmol g _{sub} ⁻¹)	Activity (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)
	none	PLA	50	4	0.000	0.000	0.000	0.000
Photo-				20	0.000	0.000	0.000	0.000
reforming	none	PET	25	4	0.000	0.000	0.000	0.000
with TiO ₂				20	0.000	0.000	0.000	0.000
Dhata	5% Pt	PLA	50	4	0.009	0.003	0.011	0.004
Photo-				20	0.358	0.053	0.089	0.013
reforming	5% Pt	PET	25	4	0.118	0.046	0.074	0.029
with Pt/1102				20	1.22	0.11	0.153	0.014

Table S11. PET pre-treatment optimisation 0.5 μ M CdS O1 QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²) for 4 h. Solution volume was 2 mL of the supernatant of 25 mg mL⁻¹ PET soaked in 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. H₂ quantities and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Experiment details	Pre- treat time (h)	Pre- treat temp (°C)	Stir	Centrifuge & filter	H2 (mmol g _{sub} -1)	±σ (mmol g _{sub} -1)	Activity (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)	± σ (mmol _{H2} g _{cds} ⁻¹ h ⁻¹)
	24	40	yes	yes	0.238	0.039	12.4	2.0
	24	none	no	yes	0.173	0.027	9.47	1.71
PET pre-	24	80	yes	yes	0.131	0.023	7.15	1.26
treatment	24	40	yes	no	0.109	0.031	5.94	1.71
optimisation	48	40	yes	yes	0.103	0.007	5.38	0.39
	24	none	yes	yes	0.102	0.016	5.54	0.87

Table S12. Stoichiometric conversion calculations. 0.5 μ M CdS O1 QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. σ is the standard deviation calculated from 3 samples. Molar masses used to calculate substrate catalyst⁻¹ loading are shown in Table S14.

Experiment Details	CdS type	Substrate	Time (h)	Substrate loading (mg mL ⁻¹)	Substrate catalyst ⁻¹ (g _{sub} g _{cds} ⁻¹)	H ₂ substrate ⁻¹ (mol _{H2} mol _{sub} ⁻¹)	±σ (mol _{H2} mol _{sub} -1)	Y-intercept of linear fit (mol _{H2} mol _{sub} ⁻¹)
				0.1	1.15	2.14	0.20	
				0.2	2.31	1.43	0.15	
	F2	PLA	24	0.3	3.47	0.911	0.130	2.33 ± 0.24
				0.4	4.62	0.690	0.039	
	01	PET		0.1	0.84	0.664	0.033	0.83 ± 0.05
Stoichiometric			24	0.2	1.67	0.437	0.035	
conversion				0.3	2.51	0.214	0.021	
calculations				0.4	3.35	0.066	0.017	
	F2			0.1	1.15	1.56	0.08	
				0.2	2.31	0.737	0.144	
		PUR	24	0.3	3.47	0.475	0.085	1.80 ± 0.27
				0.4	4.62	0.350	0.034	

Table S13. Catalyst deactivation studies. 0.5 μ M CdS QDs irradiated at 25 °C with simulated solar light (AM 1.5G, 100 mW cm⁻²). Solution volume was 2 mL of 10 M aq. NaOH in a sealed photoreactor (internal volume of 7.91 mL) under anaerobic conditions. σ is the standard deviation calculated from 3 samples.

Experiment Details	Substrate	Substrate loading (mg mL ⁻¹)	Time (h)	H₂ (µmol)	±σ (μmol)	Activity (mmol _{H2} gcds ⁻¹ h ⁻¹)	$\pm \sigma$ (mmol _{H2} g _{CdS} ⁻¹ h ⁻¹)
Injection of	PET	0.3	24	0.68	0.12	0.12	0.02
additional substrate ^[a]	Inject ethylene glycol (EG) at this point and continue irradiation (times indicate hours after injection)						
	PET, EG	0.3, 25	4	6.81	1.00	7.12	1.05
			20	18.8	2.9	3.92	0.60
Use of multiple		50.25	4	23.3	4.24	33.6	6.12
substrates ^[b]	pla, IA	50, 25	20	83.0	8.42	24.0	2.43

^[a] 0.3 mg mL⁻¹ PET irradiated for 24 h with CdS O1, followed by injection of 50 μ L ethylene glycol and further irradiation.

^[b] 50 mg mL⁻¹ PLA with 25 mg mL⁻¹ terephthalic acid and CdS F2.

Table S14. Properties of the polymers used for photoreforming.

Substrate	Structure	Molar mass (g mol⁻¹)
PLA	* [0]*	72.06 ^[a]
PET		192.17 ^[a]
PUR ^(b)		250.10 ^[a]

^[a] Molar mass of repeat unit.

^[b] Structural information was not provided by the supplier. The proposed structure and molar mass are estimated from ¹H-NMR results and literature review.

Supporting Figures

Figure S1. Transmission electron microscopy of CdS QDs (a-b) before and (c-d) after photoreforming.

Figure S2. Normalised UV-Vis absorption spectra of CdS QDs: **(a)** F1 in DMF (solid blue), O1 in hexane (dotted black), and F2 in DMF (dashed teal), and **(b)** F1 in 10 M aq. NaOH and F1 in 10 M aq. NaOH after 24 h photoreforming.

Figure S3. Long-term photocatalytic production of H₂ by CdS/CdO_x QDs (1 nmol) from pure and pretreated (a) PLA and (b) PET, PUR and PET bottle. Conditions: powdered plastic (50 mg mL⁻¹ PLA, 25 mg mL⁻¹ PET, PET bottle or PUR), 10 M aq. NaOH (2 mL), 22 h irradiation (AM 1.5G, 100 mW cm⁻², 25 °C). Error bars are the standard deviation of three measured samples.

Figure S4. Mass spectra of the gas evolved after photoreforming (AM 1.5G, 100 mW cm⁻², 24 h) of PLA (50 mg mL⁻¹) over CdS/CdO_x QDs (1 nmol) in **(a)** 10 M aq. NaOH or 10 M NaOD in D₂O, or **(b)** 10 M aq. NaOH. The background trace was collected by opening the sampling inlet to air.

Figure S5. ¹H-NMR spectra of pure and pre-treated (a) PET (25 mg mL⁻¹) and (b) PLA (50 mg mL⁻¹) in 10 M NaOD in D₂O (0.2 mL). (c) UV-Vis spectra of pure and pre-treated PLA (50 mg mL⁻¹), PET (25 mg mL⁻¹) and PUR (25 mg mL⁻¹) in 10 M aq. NaOH (2 mL) after 4 h of simulated solar light illumination (AM 1.5G, 100 mW cm⁻², 25 °C) with CdS/CdO_x QDs (1 nmol).

Figure S6. ¹H-NMR spectra of pure samples of the oxidation intermediates and products: (a) acetate, (b) 2,6-diaminotoluene, (c) ethanol, (d) ethylene glycol, (e) formate, (f) glycolate, (g) lactate, (h) propylene glycol, (i) pyruvate and (j) terephthalate. 2,6-diaminotoluene was in D₂O, while all other samples were in 10 M NaOD in D₂O. Note that peak *a* of (i) decreases over time, suggesting the formation of a pyruvate-based compound under alkaline conditions.

Figure S7. ¹³C-NMR spectra of PLA (50 mg mL⁻¹) before (pre-PR) and after (post-PR) 48 h illumination (AM1.5G, 100 mW cm⁻², 25 °C) with CdS/CdO_x (2 nmol) in 10 M NaOD I D₂O (2 mL).

Figure S8. ¹H-NMR spectra of (a) lactic acid (50 mg mL⁻¹), (b) ethylene glycol (25 mg mL⁻¹), (c) terephthalic acid (25 mg mL⁻¹), and (d) propylene glycol (25 mg mL⁻¹) in 10 M NaOD in D₂O (2 mL) before and after 24 h irradiation (AM 1.5G, 100 mW cm⁻², 25 °C) with CdS/CdO_x QDs (1 nmol).

Figure S9. ¹H-NMR spectra of PET precipitate re-dispersed in D₂O. A 25 mg mL⁻¹ PET sample in 10 M NaOD in D₂O (2 mL) after 24 h photocatalysis (AM 1.5G, 100 mW cm⁻², 25 °C) with CdS/CdO_x QDs (1 nmol) was centrifuged in order to obtain the precipitate. There is still a small quantity of *b* (ethylene glycol) because it was only possible to complete one washing step due to the water soluble nature of disodium terephthalate.

Figure S10. Quantity of H₂ photocatalytically produced per mole of **(a)** PLA, **(b)** PET and **(c)** PUR. Conditions: powdered plastic (0.1, 0.2, 0.3, 0.4 mg mL⁻¹), CdS/CdO_x QDs (1 nmol), 10 M aq. NaOH (2 mL), 24 h irradiation (AM 1.5G, 100 mW cm⁻², 25 °C). Error bars are the standard deviations of three measured samples, and the dashed lines are the linear fits of the data corresponding to the included equations.

Figure S11. Scanning electron microscopy images (magnifications of 2000×, 10000× and 30000×) of a piece of untreated PET water bottle **(a-c)** before and **(d-f)** after photoreforming with CdS/CdO_x QDs (1 nmol), 10 M aq. NaOH (2 mL), 24 h irradiation (AM 1.5G, 100 mW cm⁻², 25 °C).

Figure S12. ¹H-NMR spectrum of a PET bottle (25 mg mL⁻¹) in 10 M NaOD in D₂O (2 mL) after 24 h irradiation (AM 1.5G, 100 mW cm⁻², 25 °C) with CdS/CdO_x QDs (1 nmol). Peak assignments are (*a*) formate, (*b*, *c*, *e*) isophthalate, (*d*) terephthalate, (*f*, *q*) lactate, (*g*) glyoxylate, (*h*) glycolate, (*i*, *m*) methylglyoxal, (*j*) ethylene glycol, (*k*, *r*) ethanol, (*l*) methanol, and (*n*) acetate. Peaks (*o*), and (*p*) have not been identified and are likely linkers or fillers in the original polymer.