Supporting Information

Soft Phonon Modes from Off-center Ge atoms Lead to Ultralow Thermal Conductivity and Superior Thermoelectric Performance in n-type PbSe-GeSe

Zhong-Zhen Luo,¹,² Shiqiang Hao,³ Xiaomi Zhang,³ Xia Hua,³ Songting Cai,²,³ Gangjian Tan,² Trevor P. Bailey,⁴ Runchu Ma,⁴ Ctirad Uher,⁴ Chris Wolverton,³ Vinayak P. Dravid,³ Qingyu Yan,¹,* Mercouri G. Kanatzidis²,*

¹School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
²Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
³Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
⁴Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States

Corresponding author: alexyan@ntu.edu.sg; m-kanatzidis@northwestern.edu
Figure S1. PXRD patterns of Pb$_{0.9955}$Sb$_{0.0045}$Se-$x\%$GeSe ($x = 0, 3, 6, 9, 12$ and 14) samples, with all peaks indexed by the PbSe cubic phase (JCPDS #06-0354, red patterns).

Figure S2. Seebeck coefficient as a function of Hall carrier concentration with an effective mass of $0.35 \, m_e$ for Pb$_{0.9955}$Sb$_{0.0045}$Se-$x\%$GeSe ($x = 0, 6, 9$ and 12). The solid curves are the theoretical Pisarenko plots at 296 K (cyan), 573 K (red) and 773 K (green) for n-type PbSe with effective mass of electrons of $0.35 \, m_e$.
Figure S3. Temperature-dependent (a) Lorenz numbers, L; (b) Heat capacities, C_p; (c) Thermal diffusivity, D; and (d) Electronic thermal conductivity, κ_{ele} for Pb$_{0.9955}$Sb$_{0.0045}$Se-$x\%$GeSe.
Figure S4. (a) Phonon dispersion curves and (b) the projected phonon density of states (PDOS) for pure PbSe.
In the Debye-Callaway model, we add defect scatterings for longitudinal and transverse modes:

\[\tau_I'(x)^{-1} = \frac{V k_B^2}{4 \pi \hbar^4 v_L^4} x^4 T^4 \]

and

\[\tau_I'(x)^{-1} = \frac{V k_B^2}{4 \pi \hbar^4 v_T^4} x^4 T^4 \]

where \(\Gamma = \sum_i c_i \left(\frac{m_i - m_{\text{avg}}}{m_{\text{avg}}} \right)^2 \), \(m_i \) is the atomic mass of the \(i \)th defect, \(m_{\text{avg}} = \sum_i c_i m_i \) is the average atomic mass in the system with different concentration \(c_i \), \(x = \frac{\hbar}{k_B T} \), \(T \) temperature and \(v_L, v_T \) the longitudinal and transverse phonon velocities, respectively.

The effects of Ge alloying on suppressing \(\kappa_{\text{lat}} \) is shown in the below figure:

![Figure S5](image-url)

Figure S5. Lattice thermal conductivity comparison of pure PbSe and with 5% and 10% Ge-alloyed samples without accounting for the off-centering Ge\(^{2+} \) defect. The effects on the thermal conductivity are small.

At 300 K, \(\kappa_{\text{lat}} \) decreases from around 2.5 Wm\(^{-1}\)K\(^{-1} \) to 2.36 Wm\(^{-1}\)K\(^{-1} \) with 5% Ge and 2.27 Wm\(^{-1}\)K\(^{-1} \) with 10% Ge alloying. Evidently, the Ge alloying effect on the lattice thermal conductivity through mass fluctuation is not as significant as the impact of the off-centering defect that induces diminished phonon vibration frequencies and phonon velocities. Thus, the main cause of the \(\kappa_{\text{lat}} \) decrease by Ge alloying originates from the Ge off-centered atomic structure. The off-centered Ge induces local lattice strain that lowers the acoustic phonon frequencies, velocities and Debye temperature yielding a decrease in \(\kappa_{\text{lat}} \) by 26% of lattice thermal conductivity relative to the pure PbSe calculated (Debye-Grüneisen) value at 300 K.

On the other hand, at high concentration (10%) of Ge impurities, the phonon-impurity scattering decreases \(\kappa_{\text{lat}} \) by 9% of pure PbSe \(\kappa_{\text{lat}} \) value at 300 K as shown in Figure S5. The off-centered Ge also induces softening of the low-lying optical phonon modes, and may cause a further decrease in the lattice thermal conductivity, but this contribution is not included in our Debye Grüneisen calculations. All these combined effects help to understand the experimental observation of \(\kappa_{\text{lat}} \) decrease by 50% of \(\kappa_{\text{lat}} \) by 12% of Ge alloying.
Figure S6. The Pb$_{0.9955}$Sb$_{0.0045}$Se-12%GeSe sample was measured 3 times with almost no changes in the (a) Electrical conductivity, σ; (b) Seebeck coefficient, S; and (c) Power factor, PF, showing the good repeatability and stability. Moreover, thermal diffusion coefficient, D (d) also displays the good repeatability during heating and cooling processes.
Figure S7. Comparison of the average thermoelectric figure of merit, ZT_{avg}, values with the temperature gradient of 300 K to 923 K for several n- and p-type PbSe-based thermoelectric materials.52-58
Table S1. Room temperature densities of Pb$_{0.9955}$Sb$_{0.0045}$Se-x%GeSe (x = 0, 3, 6, 9, 12 and 14)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Measured Density, g cm$^{-3}$</th>
<th>Theoretical Density, $%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb${0.9955}$Sb${0.0045}$Se</td>
<td>8.17</td>
<td>98.9</td>
</tr>
<tr>
<td>Pb${0.9955}$Sb${0.0045}$Se-3%GeSe</td>
<td>8.09</td>
<td>98.9</td>
</tr>
<tr>
<td>Pb${0.9955}$Sb${0.0045}$Se-6%GeSe</td>
<td>7.97</td>
<td>98.4</td>
</tr>
<tr>
<td>Pb${0.9955}$Sb${0.0045}$Se-9%GeSe</td>
<td>8.01</td>
<td>99.5</td>
</tr>
<tr>
<td>Pb${0.9955}$Sb${0.0045}$Se-12%GeSe</td>
<td>7.76</td>
<td>97.5</td>
</tr>
<tr>
<td>Pb${0.9955}$Sb${0.0045}$Se-14%GeSe</td>
<td>7.7</td>
<td>97.6</td>
</tr>
</tbody>
</table>

References