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S1. Widom particle insertion method
Gas adsorption (CO2, N2) in MOFs at low partial pressures was modelled by calculating the Henry’s
Law constants for single-component adsorption via the Widom particle insertion method1 as imple-
mented in RASPA2 at 298 K. The workflow was automated by means of python scripts. One thousand
configurational-biased insertions were performed. The cutoff used for the van der Waals and elec-
trostatic energies was 12 Å, and the Ewald summation was used to handle long range electrostatic
interactions. Each simulation cell was replicated in three dimensions so as to obey the minimum
image convention. For simulations in which the standard deviation of the Henry’s Law constant was
larger than 40%, the number of configurational-biased insertions was increased to 10,000. If the CO2
Henry’s Law constant was less than 0.001 cm3 (STP)/cm3 or the standard deviation of the Henry’s
Law constant was larger than the calculated Henry’s Law constant, the MOF was removed from our
material set.

S2. Molecular dynamics (MD) simulations
The molecular dynamics package LAMMPS3 was used to compute the self-diffusivities of CO2 and N2
in the MOFs in the hypothetical and CoRE databases at 298 K. The cutoffs for the van der Waals and
electrostatic energies and the size of the unit cell were the same as was used for the Widom particle
insertion method. The initial configurations were generated using the software package PACKMOL4

with 10 CO2 or N2 molecules inside the MOF framework structures, to approximate the infinite dilu-
tion condition. VMD5 was used to generate input data files for LAMMPS. Random veolocities were
assigned to the gas molecules and the system was equilibrated for 200 ps in the canonical (NVT) en-
semble, in which the temperature was maintained using the Nose-Hoover thermostat6 with a damping
factor of 0.1 ps. The equilibration simulation was followed by a production run of 2 ns in the micro-
canonical (NVE) ensemble. A 1 fs time-step was used and velocities were recorded every 0.1 ps.
Long-range electrostatics were handled using the particle-particle-particle-mesh Ewald method.7The
self-diffusion coefficients of CO2 and N2 in the MOF structures were computed from the NVE trajecto-
ries using the Green-Kubo relation,8 as shown in equation 1.

D =
∫

∞

0

1
dN

N

∑
i=1
〈~vi(t).~vi(0)〉dt (1)

where ~vi(t) and ~vi(0) are the center of mass (COM) velocities of the adsorbates at time t and t=0,
respectively, d is the dimensionality of the system, and N is the total number of adsorbates. The
term in the brackets is the velocity auto correlation function (VACF). However, the VACF has noise in
the long time tail, which makes integration difficult. Therefore, to predict self-diffusion coefficients,
an empirical exponential decay function (equation 2) was fit to the asymptotic part of the running
integral of the VACF,9

D(t) = D+ae−bt (2)

where D(t) is the running integral in equation 1 and D, b and a are fitting parameters. The standard
deviation in D was computed from the covariance matrix of the fit. As an example, the normalized
VACF of CO2 in hypothetical MOF number 3164 and 100002 are shown in Figures 1 (a) and 1 (c),
and the numerical integration and exponential fit are shown in Figures 1 (b) and 1 (d). In some of
the MOFs, the VACF of the gas had large oscillations or noise, possibly due to gas molecules getting
caught in the cavities, and the exponential fit yielded negative values of self-diffusion coefficients.
These MOFs were removed from our database. Also, the MOFs for which the self-diffusion coefficients
were smaller than the uncertainties were rejected.
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Figure 1 Normalized velocity autocorrelation function (VACF) of MOF 3164 (a) and MOF 100002 (c) and
exponential fits ((b),(d)) used to calculate self-diffusivity for gases.

Nanoporous materials have pore networks that can be 1, 2 or 3 dimensional with geometric variations
along different directions leading to anisotropic diffusion. For this work, we defined the diffusion
of gases to be isotropic if the MOF had 3 dimensional channels, and anisotropic for MOFs with 2
or 1 dimensional channels. In making such an assumption, we have assumed that the channels in
MOFs are like highways with no side streets, and no tortuosity. So, the value of d in equation 1
was assigned to be 3, 2 or 1 based on the dimensionality of channels in MOFs. Even though this is
a simplified definition of diffusion anisotropy, it provides us an efficient way of estimating the self-
diffusion coefficient of gases while taking diffusion anisotropy into account.
Self-diffusion coefficients of CO2 and N2 as a function of LCD and PLD are shown in Figure 13. It
is observed that the MOFs with LCD and PLD < 10 Å show larger variations in the self diffusion
coefficients of both the CO2 and N2, ranging from zero to the maximum while MOFs with LCD or PLD
> 10 Å show self diffusion coefficients in excess of 10−9 m2/s to the maximum. In general, the gas
diffusivities of gases tend to increase increasing pore size.
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Figure 2 Self-diffusion coefficients of CO2 and N2 in MOFs as a function of LCD and PLD.
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S3. Polymer properties

Table 1 Polymer properties

Polymer Abbv. Full Name CO2/N2 Selectivity CO2 Permeability (barrer) Temp Ref.
PTMSP poly[1-(trimethylsilyl)-

1-propyne]
10.74 29000 23 ◦C 10

PTMGP poly[1-
(trimethylgermyl)-
1-propyne]

14 14000 23 ◦C 10

PIM-1 polymers of intrinsic
microporosity-1

19.3 4700 40 ◦C 11

PDMS polydimethylsiloxane 9.5 3800 35 ◦C 12
modified-PDMS 2,6-diisopropylphenyl

amino-hydroxy func-
tionalized polydimethy-
lsiloxane

34.17 2050.4 35 ◦C 13

PIM-7 polymers of intrinsic
microporosity-7

26.19 1100 30 ◦C 14

6FDA-durene 2,2'bis(3,4'-
dicarboxyphenyl)
hexafluoroporpane
dianhydride - 2,3,5,6-
tetramethyl-1,4-
phenylenediamine

17.51 678 35 ◦C 15

MEEP poly[bis(2-(2-
methoxyethoxy)ethoxy)]
polyphosphazene

62.5 250 30 ◦C 16

Matrimid-5218 5(6)-1-(4'
aminophenyl)-1,3,-
trimethylindane

8.5 29 22 ◦C 17

S4. Process modelling
To assess the market competitiveness of the hypothetical mixed matrix membranes (MMMs), we
have conducted techno-economic analyses of potential optimized carbon capture processes based on
MMMs. The goal of our process modelling was to estimate a cost of carbon capture (CCC) for any
membrane based on its CO2/N2 selectivity and CO2 permeance. The techno-economic evaluation was
based on a CO2 capture rate of 90%, which is the basis for the U.S. Department of Energy (DOE) car-
bon capture cost targets.18 In this study, the capture process was based on a 650 MWe super critical
pulverized coal power plant.18

The evaluation was performed making use of the three-stage membrane configuration depicted in
Figure 3. This NETL-variant configuration is based on the work of Merkel et al.19 The flue gas is sent
to a compressor and then cooled to 38 degree Celsius to achieve the desired driving force and temper-
ature prior to entering the 1st stage membrane. The composition of the gas stream is given in Table
2. The retentate from the 1st stage is then sent to the 2nd stage for further separation before being
released. A fraction of the boiler air feed is used as sweep gas in the second membrane to increase
the driving force sufficiently to remove enough CO2 to achieve 90% capture. This sweep gas causes
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some CO2 to be recycled to the boiler, thus increasing driving force across the 2nd membrane. The
oxygen depletion in the boiler is replenished by secondary air. It is essential that the model consider
the impact of this larger system interaction.

Table 2 Gas stream composition

Gas Flue gas (from Boiler)
prior to compressors
(mole fraction)

Inlet flue gas (1st stage)
(mole fraction)

Inlet flue gas (2nd
stage) (mole frac-
tion)

Inlet flue gas (3rd
stage) (mole frac-
tion)

Ar 0.0069 0.0078 0.0087 0.0042
CO2 0.2323 0.2625 0.1955 0.5965
H2O 0.1544 0.0445 0.0282 0.0001
N2 0.5716 0.6459 0.7236 0.3778
O2 0.0348 0.0393 0.0440 0.0214

After passing through the vacuum pump, the permeate from the 1st stage membrane is compressed
using a multistage compressor with inter-stage cooling and sent to a liquefaction unit where it is
cooled. The pressure of the resulting liquid stream (>96 mole % purity CO2) is increased to 152
bar by a centrifugal pump to be sent via pipeline to a sequestration site. The non-condensable gas
mixture from the liquefaction unit is fed to the third stage membrane. The permeate stream from the
third stage is recycled to the multistage compression train, and the CO2-depleted retentate stream is
depressurized by an expander and fed into the second stage membrane.
In the Merkel configuration, the retentate from the third membrane unit is recycled to the flue gas
feed. The NETL variation avoids dilution of the flue gas into the first stage, leading to an increased
driving force in the first stage and a slightly lower COE.20 Transport across the polymeric selective

Figure 3 NETL-variant of three-stage membrane configuration initially developed by Merkel et al.19

layer is assumed to follow the solution-diffusion model as described by Baker.21 An ideal CO2 selective
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membrane was modelled and the permeability of a component is the product of its solubility and dif-
fusivity in the selective material. The driving force for gas permeation is the difference in component
partial pressure across the dense skin.

Ni =
QCO2

αi
(PretZret,i−PperZper,i) (3)

where Ni, Q, αi, Pret , Pper, Zret,i, Zper,i are component molar flux (kmol/hr), permeance (kmol/m2hrbar),
membrane selectivity, pressure in the retentate (bar), permeate pressure (bar), mole fraction of
gas component in shell side (kmol/kmol), and mole fraction of gas composition in fiber bore side
(kmol/kmol), respectively.22

The total molar flux (Nt) is given by

Nt =
n

∑
i

Ni (4)

And the selectivity is given by

αi =
QCO2

Qi
(5)

All the equations for the membrane module and other associated equipment such as the boiler, com-
pressor, pumps, expanders and vacuum pumps were developed in Aspen Custom Modeler (ACM)
v8.4. Properties were configured via Aspen Properties using the Peng-Robinson equation of state with
the Boston-Mathias modifications (PR-BM). The cost of the membrane modules was assumed to be
U.S. $50/m2, including the membrane, frame, valves and piping.19,23 This cost is the same as has
been adopted for previous analysis based on pure polymer membranes. The addition of MOF material
would contribute very little in terms of material cost. The reason is that for a square meter of selec-
tive membrane, the selective layer is typically on the order of a micron. Thus the selective layer for
one square meter amounts to about one cubic centimeter. Assuming a MOF density on the order of
1g/cm3, it would take only 0.3 grams of MOF to make the selective layer for a MMM with 30 weight
percent MOF. In a recent paper, the authors discuss large-scale MOF production and synthesis scale
up, and prices on the order of $10 to $100 per kg of MOF are quoted.24,25 This translates to a cost of
$0.03 per square meter of mixed matrix membrane selective layer to account for the MOF material.
This argument addresses only the cost of the MOF material. It is true that the process of making a thin
selective membrane out of a mixed matrix membrane rather than a neat polymer membrane might
be more complicated and difficult to scale up. Recently, however, companies have created effective
methods for optimizing the production of MOFs on a large scale and at lower cost.26 The purchase
costs for all the associated equipment were estimated using correlations in Seider et al.27 A chemical
engineering (CE) cost index of 527 was used in this study. The sum of all purchased costs was mul-
tiplied by a delivered cost of 1.05 and a Lang factor of 5.04 to yield total capital cost for the capture
and compression system.28 Cost correlations for all the equipment, maintenance cost and operating
cost were developed within the Microsoft Excel platform.
Equation 6 was used to estimate the cost of CO2 captured (CCC) and the reference cost of electricity
(COEre f ) was assumed to be $70/MWh for a power plant without carbon capture.18 The contributions
to the cost of electricity (COE) for a power plant with carbon capture (CC),29 as shown in Equation
7, are: Total Overnight Cost (TOCCC) for CC, operating variable cost (OCVAFCC) for CC and parasitic
load (MWhParasitic load) due to compression work and other associated processes in the carbon capture
plant. The capital cost factor (CCF) and capacity factor (CF) in Equation 7 are 0.124 and 0.85 re-
spectively.30 The other terms (TOCre f , TOCFIX , TOCVARre f , MWhre f ) for the reference plant without
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Figure 4 Methodolgy for design of CO2 membrane processes based on techno-economic optimization.

capture are total overnight cost, fixed operating cost, variable operating cost and net power generated
from power plant without carbon capture respectively.

CCC ($/tonneCO2) =
COEcc−COEre f

CO2captured

(6)

COE =
(CCF)(TOCre f +TOCcc)+(TOCFIX)+(CF)(TOCVARre f +TOCVARCC)

(CF)(MWhre f MWhparasitic load)
(7)

As shown in Figure 4, the techno-economic optimization was set up within Framework for Opti-
mization, Quantification of Uncertainty and Sensitivity (FOQUS), which involves using Aspen Custom
Modeler for the membrane process model and an excel-based cost estimation for the equipment cost,
cost of electricity and other associated costs. A detailed description of the FOQUS software can be
found in Eslick et al.31,32 Table 3 presents the process variables subjected to optimization and the
variables were constrained to certain bounds based on experience from previous runs.
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Table 3 Bounded Optimization Variables

Variable Range
Molar flow rate of sweep air into 2nd stage membrane (kmol/hr) 10,000–120,000
Carbon capture fraction in 1st stage membrane 0.10 – 0.9
Carbon capture fraction in 2nd stage membrane 0.40 – 0.99
Carbon capture fraction in 3rd stage membrane 0.50 – 0.99
Discharge pressure of the feed gas prior to 1st stage membrane (bar) 1.00 – 5.00
Vacuum pressure at the permeate discharge of 1st stage membrane (bar) 0.18 – 0.8
Discharge pressure of the compression train prior to liquefaction (bar) 20.0 – 35.0
Liquefaction temperature (◦C) (-35.0) – (-20.0)

The design and operating conditions of the capture process were optimized to minimize COE while
maintaining 90% capture for twelve discreet simulations. Each simulation was carried out based on
specific membrane properties; namely CO2/N2 selectivities of 18, 35, 68 or 250 and CO2 permeances
of 34, 1170 or 8000 GPU. The CO2/Ar and CO2/O2 selectivity was set equal to the CO2/N2 selectivity
and the CO2/H2O selectivity was set to 0.5. The cost of carbon capture for the twelve optimized
systems (presented in Table 4) were used as input to develop a linear correlation to enable the rapid
estimation of the cost of carbon capture as a function of CO2 permeance and CO2/N2 selectivity for
any arbitrary membrane. The values for permeance and selectivity were chosen such that they bound
the region of interest.
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Table 4 Performance Indicators for each of the 12 optimizations

CO2 Permeance 34 GPU
CO2/N2 selectivity 18 35 68 250
Compression cost ($/MWh) 60.99 51.26 47.43 43.7
Vacuum pump cost ($/MWh) 8.12 6.4 5.68 5.06
Membrane area cost ($/MWh) 237.83 231.19 226.16 223.9
Liquefaction cost ($/MWh) 3.61 3.05 2.81 2.72
Cost of Electricity (COE) (%) 385.68 359.31 346.08 336.4
Net Power Output (MWe∗) 483 507 517 527
Cost of CO2 Captured ($/ton) 243.72 238.24 233.94 231.98
CO2 Permeance 1170 GPU
CO2/N2 selectivity 18 35 68 250
Compression cost ($/MWh) 33.64 29.17 26.48 25.29
Vacuum pump cost ($/MWh) 4.46 4.24 4.04 4.33
Membrane area cost ($/MWh) 31.23 27.51 26.16 22.64
Liquefaction cost ($/MWh) 3.23 2.99 2.81 2.64
Cost of Electricity (COE) (%) 101.1 87.39 80.41 72.71
Net Power Output (MWe∗) 527 541 549 556
Cost of CO2 Captured ($/ton) 69.63 61.8 57.71 52.88
CO2 Permeance 8000 GPU
CO2/N2 selectivity 18 35 68 250
Compression cost ($/MWh) 36.34 25.06 21.55 19.2
Vacuum pump cost ($/MWh) 4.16 3.45 3.29 3.31
Membrane area cost ($/MWh) 14.55 13.96 12.98 12.44
Liquefaction cost ($/MWh) 3.59 3.03 2.87 2.5
Cost of Electricity (COE) (%) 91.24 68.11 59.18 53.06
Net Power Output (MWe∗) 507 540 553 561
Cost of CO2 Captured ($/ton) 60.47 48.1 42.78 38.92
*Gross power output of base plant is 650 MWe
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