Supporting Information (SI) on

Plasma-grafting amidoxime/metal-organic framework composites for the selective sequestration of U(VI)

Fengbo Li¹, Xiaoyu Li¹,², Pu Cui¹,², Yubing Sun³*

¹ The school of Life Science and Environmental Science, Huangshan University, Huangshan, 245041, P. R. China

² State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, P. R. China

³ College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China

*Email: sunyb@ipp.ac.cn (Y. Sun); Phone: 86-10-61772890. Fax: 86-10-61772890.
Adsorption Kinetic Models. The pseudo-first-order and pseudo-second-order models can be described by Eqns. (S1) and (S2), respectively:

\[\ln (q_e - q_t) = \ln q_e - k_1 \times t \]
(S1)

\[\frac{t}{q_t} = \frac{1}{K_2 \times q_e^2} + \frac{t}{q_e} \]
(S2)

where \(q_e \) and \(q_t \) are the adsorption amounts of U(VI) (mg/g) at equilibrium time (h) and time t (h), respectively; \(k_1 \) (h\(^{-1}\)) and \(k_2 \) (g/(mg×h)) represent the kinetic rate constants of the pseudo first-order and pseudo-second-order models, respectively.

The calculated kinetic parameters of pseudo first-order and pseudo-second-order models are shown in Table S1.

<table>
<thead>
<tr>
<th>Pseudo-first-order</th>
<th>Pseudo-second-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_e) (mg/g)</td>
<td>(K_1) (h(^{-1}))</td>
</tr>
<tr>
<td>3.3458</td>
<td>0.2036</td>
</tr>
</tbody>
</table>

Langmuir and Freundlich Models. The Langmuir and Freundlich models can be depicted as Eqns. (S3) and (S4), respectively:

\[\frac{C_e}{q_e} = \frac{C_e}{q_{\text{max}}} + \frac{1}{K_L \times q_{\text{max}}} \]
(S3)

\[\ln q_e = \ln K_F + \frac{1}{n} \times \ln C_e \]
(S4)

where \(C_e \) (mol/L) is the equilibrium concentration of U(VI) remaining in the liquid.
phase, q_e (mg/g) is the amount of U(VI) adsorbed on adsorbent after adsorption equilibrium, K_L (L/mg) is a constant related to the enthalpy of adsorption, and q_{max} (mg/g), the maximum sorption capacity, represents the amount of sorbate at complete monolayer coverage. K_F (mg$^{1-n}$Ln/g) is the Freundlich constant related to the sorption capacity and $1/n$ a constant representing the degree of dependence of sorption with equilibrium concentration.

Table S2. Optimized parameters for Langmuir and Freundlich models of U(VI) adsorption on the AO/MOF composites

<table>
<thead>
<tr>
<th>T</th>
<th>q_{m} (mg/g)</th>
<th>K_L (L/mg)</th>
<th>R^2</th>
<th>$Ln K_F$ (mg$^{1-n}$Ln/g)</th>
<th>$1/n$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>293 K</td>
<td>454.55</td>
<td>0.5238</td>
<td>0.9987</td>
<td>4.8359</td>
<td>0.6758</td>
<td>0.9739</td>
</tr>
<tr>
<td>313 K</td>
<td>476.19</td>
<td>1.6154</td>
<td>0.9958</td>
<td>5.183</td>
<td>0.6089</td>
<td>0.961</td>
</tr>
<tr>
<td>333 K</td>
<td>497.51</td>
<td>0.7731</td>
<td>0.9992</td>
<td>5.4257</td>
<td>0.4928</td>
<td>0.9265</td>
</tr>
</tbody>
</table>