CuO nanosheet as a recyclable Fenton-like catalyst prepared from simulated Cu(II) waste effluents by alkaline H$_2$O$_2$ reaction

Mengyuan Fanga, Ru Zhenga, Yunwen Wua, Dongting Yuea, Xufang Qiana,*, Yixin Zhaoa,c,* and Zhenfeng Bianb,*

a School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

b The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China

c Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, P.R. China

Contents:

Table S1. Comparison of various Fe-oxide catalysts in the catalytic performance under visible irradiation.

Figure S1. The photographs of CuO NSs (A) and commercial CuO (B).

Figure S2. XRD patterns of commercial CuO and fresh CuO NSs collected with different H$_2$O$_2$ Concentrations (A). Magnified XRD patterns of which indicated by the arrows (B).

Figure S3. TEM images and high resolution TEM of fresh CuO NSs.

Figure S4. UV/Vis/NIR DRS spectra of fresh CuO NS and commercial CuO.

Figure S5. Wide scan XPS spectrum fresh CuO nanosheets, commercial Cu$_2$O and commercial CuO.

Figure S6. EPR spectra of CuO nanosheets and commercial CuO.

Figure S7. The effect of presence of chloridion on the phenol degradation Fenton-like reaction.
Figure S8. The intermediates variations on the HPLC chromatograph during phenol degradation with different reaction conditions.

Figure S9. Cyclic voltammograms of CuO NSs electrode at scan rate of 100 mV/s in 0.5M Na₂SO₄ solution (pH = ~ 6) under visible light irradiation and dark condition.

Figure S10. Phenol adsorption capacities of recovered CuO.

Figure S11. Wide angle XRD patterns of CuO NS and secondary recovered CuO NS.

Table S1. Comparison of various Fe-oxide catalysts in the catalytic performance under visible irradiation.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Target pollutant</th>
<th>Conditions</th>
<th>Removal efficiency (%)</th>
<th>TOC removal (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>2,4-dichlorophenol (200 mg L⁻¹)</td>
<td>[Catalyst]= 2.5 g L⁻¹, [H₂O₂] = 50 mM, initial pH=5.5, time=10 min</td>
<td>18</td>
<td>-</td>
<td>J. Ind. Eng. Chem, 2015, 21, 668-676.</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Orange II (20 mg L⁻¹)</td>
<td>[Catalyst]=1.5 g L⁻¹, [H₂O₂] = 10 mM, initial pH=6, time=60 min</td>
<td>20</td>
<td>-</td>
<td>J. Colloid Interf. Sci, 2018, 529, 247-254</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Phenol (10 mg L⁻¹)</td>
<td>[Catalyst]=1 g L⁻¹, [H₂O₂] = 26 mM, initial pH=4.0, time=120 min</td>
<td>55</td>
<td>-</td>
<td>Appl. Catal. B:Environ, 2017, 211, 157-166</td>
</tr>
<tr>
<td>α-Fe₂O₃</td>
<td>Phenol (50 mg L⁻¹)</td>
<td>[Catalyst]= 1 g L⁻¹, [H₂O₂] = 3 mM, initial pH=5.5, time=120 min</td>
<td>60</td>
<td>25</td>
<td>J. Photoch. Photobio. A, 2017, 332, 1,521-533</td>
</tr>
<tr>
<td>α-Fe₂O₃</td>
<td>AO7 (35 mg L⁻¹)</td>
<td>[Catalyst]= 0.1 g L⁻¹, [H₂O₂] = 1.94 mM, initial pH=6.85, time=14 min</td>
<td>2</td>
<td>-</td>
<td>Appl. Catal. B:Environ, 2010, 96, 1-2,162-168</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>Phenol (20 mg L⁻¹)</td>
<td>[Catalyst]= 0.25 g L⁻¹, [H₂O₂] = 10 mM, initial pH=5.0, time=120 min</td>
<td>52</td>
<td>-</td>
<td>Sep. Purif. Technol, 2016, 171, 80-87</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>Phenol (0.4 mM)</td>
<td>[Catalyst]= 0.5 g L⁻¹, [H₂O₂] = 5 mM, pH=7, time=120 min</td>
<td>60</td>
<td>-</td>
<td>J. Hazard. Mater, 2017, 325, 90-100.</td>
</tr>
<tr>
<td>CuO</td>
<td>Phenol (100 mg L$^{-1}$)</td>
<td>[Catalyst]= 0.15 g L$^{-1}$, [H$_2$O$_2$] =120 mM, pH=6, time=40 min</td>
<td>100</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>--</td>
<td>-----</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>

Figure S1. The photographs of fresh CuO NS (A) and commercial CuO (B).
Figure S2. XRD patterns of commercial CuO and recycled CuO NSs collected with different H$_2$O$_2$ concentrations. Magnified XRD patterns of which indicated by the arrows.

Figure S3. TEM images and high resolution TEM of recycled CuO NSs.
Figure S4. UV/Vis/NIR DRS spectra of fresh CuO NS and commercial CuO.

Figure S5. Wide scan XPS spectra of fresh CuO NSs, commercial Cu$_2$O and commercial CuO.
Figure S6. EPR spectra of CuO nanosheets and commercial CuO.
Figure S7. The effect of presence of chloride on the phenol degradation Fenton-like reaction. Experimental conditions: 50 mg/L phenol, 150 mL catalyst, initial pH = 6, [H$_2$O$_2$] = 100 mmol/L, [Cl$^-$] = 100 mM, under visible irradiation.
Figure S8. The intermediates variations on the HPLC chromatograph during phenol degradation with different reaction conditions. 1. phenol; 2&5. benzoquinone; 3. Maleic acid; 4. oxalic acid.
Figure S9. Cyclic voltammograms of CuO NSs electrode at scan rate of 100 mV/s in 0.5M Na$_2$SO$_4$ solution (pH = ~6) under visible light irradiation and dark condition.

Figure S10. Phenol adsorption capacities of recovered CuO.

Experimental conditions: 50 mg/L phenol, 150 mg/L catalyst, initial pH = 6.
Figure S11. Wide angle XRD patterns of CuO NS and secondary recovered CuO NS.