Supplementary Information

Plant Species Dependant Transformation and Translocation of Ceria Nanoparticles

Peng Zhang,^{*,a,b} Yuhui Ma,^a Changjian Xie,^a Zhiling Guo,^b Xiao He,^a Eugenia Valsami-Jones,^b Iseult Lynch,^b Wenhe Luo,^a Lirong Zheng,^c Zhiyong Zhang^{*,a}

^aKey Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

^bSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom

^cBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Authors: Peng Zhang, e-mail: pengzhang@ihep.ac.cn, p.zhang.1@bham.ac.uk, telephone: +86-10-88233215, fax: +86-10-88235294; Zhiyong Zhang, e-mail: zhangzhy@ihep.ac.cn.

FIGURES AND TABLES

Figure S1. TEM image of $nCeO_2$. Size averaged from 100 particles in the TEM images is 25 ± 4 nm, and shape is octahedral.

Figure S2. Dry weight of the plants treated with 2000 mg/L nCeO₂ in hydroponic solution. * indicates significant difference between control and nCeO₂ treatment. Data are expressed as mean \pm SD (n = 8). * indicates significant difference between +P and –P treatment (p < 0.05).

Figure S3. TEM images of corn roots. (A) and (B) show the root surface, (C) and (D) show the inside of a single cell. (B) and (D) are magnifications of the areas highlighted in the rectangles in (A) and (C).

Figure S4. TEM images of wheat roots. (A) and (B) show the root surface, (C) and (D) show the inside of a single cell. (B) and (D) are magnifications of the areas highlighted in the rectangles in (A) and (C).

Figure S5. TEM images of soybean roots. (A) shows the root surface, (B) shows a low magnification image of the root section, (C) and (D) are magnifications of the areas highlighted in the rectangles in (B). Arrows in (B) indicate the $nCeO_2$ aggregates.

Figure S6. TEM images of cabbage roots. (A) and (B) show the root surface, (C) and (D) show the inside of a single cell. (B) and (D) are magnifications of the areas highlighted in the rectangles in (A) and (C). Arrows in (B) indicate the rod like particles.

Figure S7. Translocation factors of Ce(IV) and Ce(III) in different plant species.

Figure S8. Size distributions of $nCeO_2$ (100 mg/L) in root exudates extracted from plants cultured in the +P condition.

Figure S9. Size distributions of $nCeO_2$ in root exudates extracted from plants cultured in the -P condition.

	Hydrodynamic sizes	Zeta potentials (mV)
dd H ₂ O	135 ± 24	30.6 ± 5.1
+P NS	1578 ± 240	-8.9 ± 4.0
-P NS	1367± 198	-7.1 ± 3.2

Table S1. Hydrodynamic sizes and Zeta potential of $nCeO_2$ (100 mg/L) in deionized water (ddH₂O) and nutrient solutions (NS).

Table S2. Fraction of Ce species in roots and fitting parameters from LCF analysis.

Root (%)	CeO ₂	Ce(CH ₃ COO) ₃	$Ce_2(C_2O_4)_3$	CePO ₄	R-factor	Chi-square
+P-corn	82		2.4	15.6	0.000040	0.00656
-P-corn	92.4		5.3	2.3	0.000785	0.01326
+P-wheat	91.2		2.3	6.5	0.000428	0.06281
-P-wheat	85.1		10.8	4.1	0.004597	0.00114
+P-cabbage	82.1		5.5	12.4	0.000333	0.05219
-P-cabbage	74.1		19.5	6.4	0.000117	0.01780
+P-soybean	92.2		0.7	7.1	0.000123	0.02181
-P-soybean	83.2		11.7	5.1	0.000152	0.02343

Table S3. Fraction of Ce species in shoots and fitting parameters from LCF analysis.

Shoot (%)	CeO ₂	$Ce(CH_3COO)_3$	$Ce_2(C_2O_4)_3$	$CePO_4$	R-factor	Chi-square
+P-corn	94.7	0.9	4.4		0.00271	0.0305
-P-corn	6.7		93.3		0.00151	0.0206
+P-wheat	78.2		21.6		0.00212	0.0281
-P-wheat	39.5		60.5		0.00110	0.0140
+P-cabbage	89.7	0.8	9.5		0.00007	0.0008
-P-cabbage	42.1		57.9		0.00176	0.0219
+P-soybean	91.8		8.2		0.00213	0.0281
-P-soybean	58.1		43.3		0.00250	0.0343

Table S4. Contents of Ce(IV) and Ce(III) species (mg/kg) in shoots and roots of plants calculated

		Ce	(IV)	Ce	(111)
		-P	+P	-P	+P
	corn	10.61	5.27	147.74	0.29
shoot	wheat	55.43	21.83	84.89	6.09
SHOOL	cabbage	73.47	67.69	101.03	7.77
	soybean	104.96	70.46	75.69	6.29
	corn	62918.28	10249.75	5175.097	2249.945
root	wheat	33418.26	31301.83	5851.14	3020.352
1001	cabbage	43211.62	25794.26	15103.66	5623.84
	soybean	29122.64	29068.46	5880.533	2459.154

by multiplying the percentage of the Ce(IV) or Ce(III) species by the total Ce contents.

Table S5. Zeta potential of nCeO2 (100 mg/L) in root exudates extracted from plants cultured in the +P and –P conditions.

	Corn	Wheat	Cabbage	Soybean
+P	-16.1 ± 2.2	-15.5 ± 2.5	-21.4 ± 4	-18.7 ± 1
-P	-18.6 ± 2.1	-12.9 ± 1.2	-20.4 ± 5	-19.1 ± 2