Supporting Information:

Photocatalytic ozonation mechanism of gaseous n-hexane on MOx-TiO$_2$-foam nickel composite (M=Cu, Mn, Ag): Unveiling the role of ·OH and ·O$_2^-$

Peng Wei a, Dandan Qin a, Jiangyao Chen a,*, Yanxu Li a, Meicheng Wen a, Yuemeng Ji a,*, Guiying Li a, Taicheng An a

a Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China

* Corresponding authors:

Prof. Jiangyao Chen

E-mail: chenjiangyao@gdut.edu.cn

Prof. Yuemeng Ji

E-mail: jiym99@163.com
Fig. S1. SEM images of Mn$_2$O$_3$-MnO$_2$/TiFN (a) and Ag-Ag$_2$O/TiFN (b).
Fig. S2. O 1s spectra of Cu$_2$O-CuO/TiFN (a), Mn$_2$O$_3$-MnO$_2$/TiFN (b) and Ag-Ag$_2$O/TiFN (c) before and after the photocatalytic ozonation reaction.
Fig. S3. Outlet O₃ concentration under VUV photolysis of n-hexane within 60 min.

Fig. S4. Reduction concentration of O₃ after photocatalytic ozonation of n-hexane on MOx/TiFN within 60 min.
Fig. S5. Mass spectra of detected intermediates on TiFN (a-d) and MOx/TiFN (a-f).