SUPPLEMENTARY DATA

Photocatalytic degradation of polybrominated biphenyls (PBBs) on metal doped TiO$_2$ nanocomposites in aqueous environment: Mechanisms and solution effects

Rui Wang, Ting Tang, Guining Lu, Kaibo Huang, Siyuan Feng, Xin Zhang, Xueqin Tao, Hua Yin, Zhang Lin, Zhi Dang,

4 pages, 5 Figures, 1 Table
Fig. S1. The degradation of PBB-29 by direct UV light, TiO\(_2\) only, and TiO\(_2\) with UV light.

Fig. S2 The chromatograms of the degradation of PBB-29 in 5% Pd/TiO\(_2\) systems with methanol and water solutions.
Fig. S3. The chromatograms of the degradation of PBB-29 in 5% Ag/TiO$_2$ systems with methanol and water solutions.

Note for Fig. S3: Since the degradation of PBBs in methanol systems only underwent debromination process, we have calculated the debromination efficiency of PBBs based on the equation below:

\[
\text{Debromination efficiency (t)} = \frac{C_{\text{biphenyl}, t} \times 3 + C_{\text{monoPBB}, t} \times 2 + C_{\text{diPBB}, t} \times 1}{C_{\text{PBB-29, 0 min}} \times 3}
\]

Where $C_{\text{PBB-29, 0 min}}$ is the initial concentration of PBB-29, $C_{\text{biphenyl/monoPBB/diPBB}, t}$ refers to the concentration of certain PBBs at t min. All the concentration should be converted into molar fraction. In 30 min, PBB-29 in 5% Pd/TiO$_2$ systems can reach to 100% debromination efficiency (Fig. S2), while that in 5% Ag/TiO$_2$ systems can only reach to 53% (Fig. S3). This is because the lower PBBs by e-transfer process is more difficult to be debrominated than the higher PBBs (See our discussion about LUMO in main text).

Table S1. The energies of highest occupied molecular orbitals (HOMO) and lowest
unoccupied molecular orbitals (LUMO) of PBB-29, PBB-7 and PBB-3.

<table>
<thead>
<tr>
<th>Name</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBB-29</td>
<td>-0.2546</td>
<td>-0.0540</td>
</tr>
<tr>
<td>PBB-7</td>
<td>-0.2521</td>
<td>-0.0468</td>
</tr>
<tr>
<td>PBB-3</td>
<td>-0.2430</td>
<td>-0.0466</td>
</tr>
</tbody>
</table>

Fig. S4. The degradation of PBB-29 in Pd/TiO$_2$-H$_2$ system with Ar or O$_2$ purging.
Fig. S5. Electron paramagnetic resonance spectra of pristine TiO$_2$, Pd/TiO$_2$ and Ag/TiO$_2$ in water with O$_2$ or Ar purging.