Supporting Information

Simultaneously photocatalytic redox and removal of chromium(VI) and arsenic(III) by hydrothermal carbonsphere@nano-Fe₃O₄

Feng Liu[†], Weifang Zhang[†], Le Tao[†], Boyuan Hao[#], Jing Zhang[†]*

[†]Department of Environmental Nano-materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China

School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China

National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China

*Corresponding author: Tel./Fax: +86-10-62919003. E-mail: jingzhang@rcees.ac.cn

Figure S1. SEM images of fresh HCS@Fe₃O₄

Figure S2. Elemental mapping images of fresh HCS@Fe₃O₄

Figure S3. SEM images of used HCS@Fe₃O₄

Figure S4. Elemental mapping images of used HCS@Fe₃O₄

Figure S5. TGA profiles of HCS@Fe₃O₄ under nitrogen (a) and air (b).

Figure S6. Simultaneously redox efficiency of Cr(VI) (a) and As(III) (b) in different systems. [Cr(VI)]=100µM, [As(III)]=100µM, cat.=0.2g/L.

Figure S7. Distribution of Fe(III) species in solutions at different pH values.

Conditions: [Fe³⁺]=50 µM

Figure S8. ESR spectra in the HCS@Fe₃O₄ system in the dark at pH 3.0.

Conditions: [Fe³⁺]=200 µM, [Cr³⁺]=100 µM, [e⁻]=9.3 µM

Figure S10. Species distribution of FeAsO₄ solution at different pH.

[FeAsO₄]=0.1mol·kg⁻¹ H₂O

Figure S11. Cycling experiments of HCS@Fe₃O₄ for the removal percentage of Cr(VI) and As(III) under light irradiation. [Cr(VI)]=100 μ M, [As(III)]=100 μ M, HCS@Fe₃O₄=0.2g/L.

Figure S12. The release of Fe(II) in the HCS@Fe₃O₄ system and the change of Fe(II) with the addition of Cr(VI) or As(III) after 120min.