Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2018

Supplemetary information

2

1

3 Immobilization of hydrous iron oxides into porous alginate beads for

4 arsenic removal from water

5

- 6 Abinashi Sigdel, Joowan Lim, Jeongwon Park, Hyoeun Kwak, Sojin Min, Keehong Kim,
- 7 Hosung Lee, Chang Hyun Nahm, Pyung-Kyu Park*

8

9 Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju,
10 Gangwon, 26493, Republic of Korea.

- 12
- 13
- 13
- 14
- 15
- 16
- 17 *Corresponding author: Pyung-Kyu Park
- 18 Tel.: +82-33-760-2890; Fax: +82-33-760-2571; E-mail: pkpark@yonsei.ac.kr

	As(III)	As(V)
Langmuir Isotherm		
$q_m [m mg/g]$	47.3	30.0
<i>b</i> [L/mg]	0.023	0.038
R ²	0.985	0.995
Fruendlich Isotherm		
$K_f[(\mathrm{mg/g})\cdot(\mathrm{L/mg})^{1/\mathrm{n}}]$	5.02	4.80
n	2.84	3.45
R ²	0.997	0.990

19 Table S1. Langmuir and Freundlich isotherm parameters for As(III) and As(V)
20 adsorption onto HIO-P-alginate beads

22 Langmuir and Freundlich isotherm equations are expressed as follows:^{S1}

$$q_e = \frac{q_m b C_e}{(1 + b C_e)} \tag{S1}$$

24

21

$$q_e = K_f C_e^{1/n} \tag{S2}$$

where C_e and q_e are the equilibrium concentrations of an adsorbate in liquid (water) and solid phases, respectively; q_m and b are Langmuir isotherm constants related to the maximum monolayer adsorption capacity of the adsorbent and the strength of adsorption, respectively; K_f and n are Freundlich constants related to adsorption capacity and heterogeniety respectively. Equation (S1) and (S2) can be linearized as follows:

31
$$C_e/q_e = 1/bq_{e,max} + C_e/q_{e,max}$$
 (S3)

32

$$C_e/q_e = 1/bq_{e,max} + C_e/q_{e,max}$$
(S4)

As shown in Table S1, the q_m and K_f values obtained from Langmuir and Freundlich isotherm equations were higher for As(III) than As(V). This indicates that the adsorption capacity for As(III) of the HIO-P-alginate beads prepared in this study was higher than that for As(V). The *b* value of the Langmuir isotherm was greater for As(V), meaning the adsorption of As(V) toward the HIO-P-alginate beads was stronger than that of As(III). The Freundlich parameter *n* was greater than 1, indicating favorable nature of adsorption by the HIO-P-alginate beads under the investigated conditions.^{S2, S3}

FTIR (Fourier transform infrared) analysis for HIO-P- and HIO-alginate beads was 46 conducted to investigate whether unreacted carbonate and bicarbonate ions existed in the 47 beads using a FTIR spectrometer (Spectrum OneTM, Perkin Elmer, USA). Samples for the 48 analysis were prepared using KBr pellet method. As shown in Fig. S1, the peaks at 1650-49 1780 cm⁻¹ (small shoulder in the blue circles) and 1000-1300 cm⁻¹ (red circles) correspond to 50 C=O and C-O bonds, respectively. In these regions, the peaks of HIO-P- and HIO-alginate 51 beads were similar, proposing that unreacted carbonate and bicarbonate ions hardly remained 52 in HIO-P-alginate beads and thus did not exert any significantly negative effect on arsenic 53 adsorption by the HIO-P-alginate beads in this study. 54

Fig. S2. N₂ adsorption-desorption isotherms and pore size distributions of (a) HIO-Pand (b) HIO-alginate beads.

Fig. S2 shows that the N₂ adsorption-desorption isotherms of HIO-P- and HIO-alginate beads are similar to type IV, according to IUPAC classification, which means they were mesoporous adsorbents.^{S4} Also, HIO-P- and HIO-alginate beads had broad H2 hysteresis loops, which is the characteristics of mesoporous materials with complex pore structure.^{S4, S5} In the pore size distribution results of Fig. S2, the average pore size of HIO-P- and HIOalginate beads were 4.5 and 4.2 nm, respectively. These results also indicate that both of the HIO-P- and HIO-alginate beads had mesoporous structures.

69 **References**

S1. X. L. Li, Y. X. Qi, Y. F. Li, Y. Zhang, X. H. He and Y. H. Wang, Novel magnetic beads
based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal
for Pb²⁺ in aqueous solutions by using a batch and continuous systems, *Bioresource Technol.*, 2013, 142, 611-619.

S2. B. H. Hameed, A. A. Ahmad and N. Aziz, Isotherms, kinetics and thermodynamics of
acid dye adsorption on activated palm ash, *Chem. Eng. J.*, 2007, **133**, 195-203.

S3. P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi and
S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: Studies on
equilibrium isotherm, kinetics and thermodynamics of interactions, *Desalination*, 2010,
261, 52-60.

- S4. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J.
 Rouquerol and K. S. W. Sing, Physisorption of gases, with special reference to the
 evaluation of surface area and pore size distribution (IUPAC Technical Report), *Pure Appl. Chem.*, 2015, 87, 1051-1069.
- S5. A. H. Gedam and R. S. Dongre, Activated carbon from Luffa cylindrica doped chitosan
 for mitigation of lead(ii) from an aqueous solution, *RSC Adv.*, 2016, 6, 22639-22652.
- 86
- 87
- 88