Lipolysis of Domestic Wastewater in Anaerobic Reactors Operating at Low Temperatures.

Evangelos Petropoulosa, Jan Dolfinga, Yongjie Yua,b, Matthew J. Wadea, Emma J. Bowena, Russell J. Davenporta, Thomas P. Curtisa

aSchool of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU England, UK

bState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China
Fig. I – Absolute abundance of left) bacterial phyla developed in the anaerobic reactors operating at 4, 8 and 15 °C; right) bacterial phyla in the raw wastewater (substrate).
Fig II. – Significance of the differences between the top 100 sequenced genera in the 4°C reactor replicates and the wastewater (White’s non-parametric t-test); D1, 2 the 4°C reactors, D24 the WW sample.
Fig III. – Significance of the differences between the top100 sequenced genera developed in the 8°C reactor replicates and the wastewater (White’s non-parametric t-test); D3, 4 the 8°C reactors, D24 the WW sample.
Fig IV. Significance of the differences between the top 100 sequenced genera developed in the 15°C reactor replicates and the wastewater (White’s non-parametric t-test); D5, 6 and 7 the 15°C reactors, D24 the WW sample.