Biofouling control by UV/H$_2$O$_2$ pretreatment for brackish water reverse osmosis process

Anat Lakretza, Hadas Mamanea*, Eli Asab, Tali Harifc, and Moshe Herzbergb*

aSchool of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
bBen Gurion University of the Negev, Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research, Sede Boqer Campus, Midreshet Ben Gurion, 84990 Israel. E-mail: herzberg@bgu.ac.il
cSevern Trent plc, Severn Trent Centre, 2 St John's St, Coventry, CV1 2LZ, UK
Degradation of pCBA involves direct UV photolysis and indirect photo-oxidation by •OH radicals, as described by Rosenfeldt and Linden (2007)\(^1\).

\[
-ln\left(\frac{[p\text{CBA}]_t}{[p\text{CBA}]_0}\right)/t = k_{\text{obs}} = k' + k_{p\text{CBA,•OH}}[•\text{OH}]_s
\]

\(\quad k' = \phi_{p\text{CBA}} \times k_{s,p\text{CBA}} \)

\[
k_{s,p\text{CBA}} = \sum_{200-300} \frac{10^{-3} \times E^0_p(\lambda) \varepsilon_{p\text{CBA}}(\lambda) \left[-10^{-a(\lambda)z} \right]}{a(\lambda)\varepsilon}
\]

\[
[•\text{OH}]_s = \frac{k_{\text{obs}} - \phi_{p\text{CBA}} \times k_{s,p\text{CBA}}}{k_{p\text{CBA,•OH}}}
\]

Where, \([p\text{CBA}]_0\) and \([p\text{CBA}]_t\) are initial pCBA concentration (M) and its concentration after exposure time \(t\) (sec), respectively. \(k_{\text{obs}}\) and \(k'\) are the observed (total) and direct-photolysis time-based pseudo-first-order degradation rate constants of pCBA, respectively (1/sec). \([•\text{OH}]_s\) is the steady-state •OH radical concentration (M) and \(k_{p\text{CBA,•OH}}\) is the second-order rate constant of pCBA reaction with •OH, reported to be 5×10\(^9\) 1/M s. \(\phi_{p\text{CBA}}\) is the quantum yield for pCBA removal 0.0182 mole/Einstein, \(k_{s,p\text{CBA}}\) is the specific rate of light absorption by pCBA (Einstein/mole sec). \(E^0_p(\lambda)\) is the incident photon irradiance (Einstein/cm\(^2\) sec), \(\varepsilon_{p\text{CBA}}(\lambda)\) is the molar (decadic) absorption coefficient of pCBA (1/M cm), \(a(\lambda)\) is the solution absorption coefficient (1/cm) and \(z\) is the depth of solution (cm).
Fig. S1 RO lab unit experimental photo-image.

Fig. S2 Atlantium hydro-optic-disinfection (HOD™) RZ104-11 MP-UV reactor: (A) photo; (B) schematic illustration.

Reference