Supplementary Material

The fate of dichloroacetonitrile in the UV/Cl\(_2\) and UV/H\(_2\)O\(_2\) processes: Implications on potable water reuse

Submitted to:

Environmental Science: Water Research & Technology

Ran Yin\(^a,\,*\), Zhuozhi Zhong\(^a\), Li Ling\(^a,\,*\), Chii Shang\(^a,\,b\)

a. Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

b. Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

* Corresponding authors: Address correspondence to Ran Yin: Tel: (852) 5489 3675; E-mail: rvin@connect.ust.hk.

The Supplementary Material contains: 1 Text, 9 Figures and 1 Scheme.
Table of Contents

Text S1: Detailed procedures for calculation of steady-state concentrations of ClO⁻ and HO₂⁻ and their second-order rate constants towards DCAN...3
Fig. S1. The experimental setup in this study. ...4
Fig. S2. Absorbance changes under UV254 irradiation employing iodide/iodate as chemical actinometry ...5
Fig. S3. Photolysis of dilute H₂O₂ under UV irradiation at 254 nm. Conditions: [H₂O₂]₀ = 100 μM, 22 °C..6
Fig. S4. The absorption spectrum of DCAN (in black) and the emission spectrum of UV lamps (in red). ..7
Fig. S5. Time-dependent degradation of DCAN by water hydrolysis, UV photolysis, H₂O₂, Cl₂, UV/H₂O₂ and UV/Cl₂ processes. Conditions: [DCAN] = 1 μM, [Chlorine] = [H₂O₂] = 500 μM, pH = 5.0, UV intensity = 0.54 μW/cm²...8
Figure S6. The pseudo first-order rate constants of DCAN degradation by nucleophilic attack and radical oxidation as a function of (a) Cl₂ dosage in UV/Cl₂ process and (b) H₂O₂ dosage in UV/H₂O₂ process. Conditions: [DCAN] = 1 μM, UV intensity = 0.54 μW/cm², pH = 6, [Cl₂] = [H₂O₂] = 50, 100 and 500 μM..9
Fig. S7. The photo-decomposition of (a) Cl₂ in the UV/Cl₂ process and (b) H₂O₂ in the UV/H₂O₂ process. Conditions: [chlorine] = [H₂O₂] = 500 μM, pHs = 5 and 6, UV intensity = 0.54 μW/cm². ...10
Fig S8. Comparison of cost effectiveness for 1-order of DCAN degradation by using UV/Cl₂ and UV/H₂O₂ processes in 1 m³ of water. Conditions: [DCAN] = 1 μM, UV intensity = 0.54 μW/cm², pH = 6, [Chlorine] = [H₂O₂] = 500 μM..11
Fig. S9. The degradation products of DCAN by chlorination (b) and in the UV/Cl₂ process (c). Conditions: [chlorine] = 500 μM, pHs = 6, UV intensity = 0.54 μW/cm²...12
Scheme S1. Proposed pathways of DCAN degradation in the UV/Cl₂ and UV/H₂O₂ processes. ..13
Text S1: Detailed procedures for calculation of steady-state concentrations of ClO$^-$ and HO$_2^-$ and their second-order rate constants towards DCAN.

The steady-state concentrations of ClO$^-$ and HO$_2^-$ can be directly obtained from Eqs. S1 – S4. The second order rate constant of ClO$^-$ and HO$_2^-$ towards DCAN was calculated in Eq. S5, where k'_{Cl^-} is the pseudo first order rate constant of DCAN degradation by ClO$^-$ (in the absence of UV) and $[ClO^-]$ is the steady state concentration of ClO$^-$ that was obtained from Eqs. S1 – S4.

\[\text{HOCl} \leftrightarrow \text{ClO}^- + H^+ \quad pKa = 7.5 \quad \text{Eq. S1} \]

\[[\text{ClO}^-] = \frac{[\text{free chlorine}]}{1 + 10^{pK_a-pH}} \quad \text{Eq. S2} \]

\[\text{OH}^- + H_2O_2 \leftrightarrow H_2O + HO_2^- \quad pKa = 11.8 \quad \text{Eq. S3} \]

\[[\text{HO}_2^-] = \frac{[H_2O_2]}{10^{pK_a-pH}} \quad \text{Eq. S4} \]

\[k'_{Cl^-} = k_{Cl^-DCAN}[ClO^-] \quad \text{Eq. S5} \]
Fig. S1. The experimental setup in this study.
Fig. S2. Absorbance changes under UV254 irradiation employing iodide/iodate as chemical actinometry.

\[y = 0.0037x + 0.1142 \]
\[R^2 = 0.9936 \]
Fig. S3 Photolysis of dilute H$_2$O$_2$ under UV irradiation at 254 nm. Conditions: [H$_2$O$_2$]$_0$ = 100 μM, 22 °C.
Fig. S4. The absorption spectrum of DCAN (in black) and the emission spectrum of UV lamps (in red).
Fig. S5. Time-dependent degradation of DCAN by water hydrolysis, UV photolysis, H\textsubscript{2}O\textsubscript{2}, Cl\textsubscript{2}, UV/H\textsubscript{2}O\textsubscript{2} and UV/Cl\textsubscript{2} processes. Conditions: [DCAN] = 1 μM, [Chlorine] = [H\textsubscript{2}O\textsubscript{2}] = 500 μM, pH = 5.0, UV intensity = 0.54 μW/cm2.
Figure S6. The pseudo first-order rate constants of DCAN degradation by nucleophilic attack and radical oxidation as a function of (a) Cl\textsubscript{2} dosage in UV/Cl\textsubscript{2} process and (b) H\textsubscript{2}O\textsubscript{2} dosage in UV/H\textsubscript{2}O\textsubscript{2} process. Conditions: [DCAN] = 1 uM, UV intensity = 0.54 μW/cm2, pH = 6, [Cl\textsubscript{2}] = [H\textsubscript{2}O\textsubscript{2}] = 50, 100 and 500 μM.
Fig. S7. The photo-decomposition of (a) Cl₂ in the UV/Cl₂ process and (b) H₂O₂ in the UV/H₂O₂ process. Conditions: [chlorine] = [H₂O₂] = 500 μM, pHs = 5 and 6, UV intensity = 0.54 μW/cm².
Fig S8. Comparison of cost effectiveness for 1-order of DCAN degradation by using UV/Cl$_2$ and UV/H$_2$O$_2$ processes in 1 m3 of water. Conditions: [DCAN] = 1 μM, UV intensity = 0.54 μW/cm2, pH = 6, [Chlorine] = [H$_2$O$_2$] = 500 μM.
Fig. S9. The degradation products of DCAN by chlorination (b) and in the UV/Cl₂ process (c). Conditions: [chlorine] = 500 μM, pHs = 6, UV intensity = 0.54 μW/cm².
Scheme S1. Proposed pathways of DCAN degradation in the UV/Cl₂ and UV/H₂O₂ processes.