Supplementary information

For

Effect of bamboo charcoal amendment on an AnMBR in aspect of anaerobic habitat and membrane fouling

Lu Yea, Tian Xiaa, Hui Chena, Liangliang Linga, Xiangyang Xua,b,c, Pedro J.J. Alvarezd, Liang Zhua,b,c,*

aInstitute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China

bZhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China

cZhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China

dDepartment of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA

*Corresponding author: Liang Zhu

Address: Department of Environmental Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, PR China.

Tel.: +86-571-88982343; Fax: +86-571 88982343

E-mail address: felix79cn@zju.edu.cn.
Fig. S1 The evolution of the TMP in the AnMBR and B-AnMBR
Fig. S2 Relative abundance of archaeal community at the class level
Table S1 The fluorescence intensity of protein, α-polysaccharide and β-polysaccharide in different samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protein</th>
<th>α-polysaccharide</th>
<th>β-polysaccharide</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnMBR membrane</td>
<td>15.479</td>
<td>10.349</td>
<td>19.906</td>
</tr>
<tr>
<td>B-AnMBR membrane</td>
<td>6.075</td>
<td>4.283</td>
<td>6.734</td>
</tr>
<tr>
<td>Bamboo charcoal</td>
<td>13.14</td>
<td>5.215</td>
<td>5.877</td>
</tr>
</tbody>
</table>