Supplementary Information

Ligament Size-Dependent Electrocatalytic Activity of Nanoporous Ag Network for CO₂ Reduction

Wanfeng Yang¹, Wensheng Ma², Zhonghua Zhang², Chuan Zhao¹

¹School of Chemistry, Faculty of Science, University of New South Wales Sydney, New South Wales 2052, Australia
²Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, P.R. China

*Corresponding author. Email: chuan.zhao@unsw.edu.au, zh_zhang@sdu.edu.cn.

This part includes:

Figures S1-S3
Figure S1. SEM images with lower magnification of (a) np-Ag (21 nm) and (b) np-Ag (87 nm).
Figure S2. (a, b) Bright field TEM images and (c) dark field TEM image of np-Ag (21 nm). (d) Bright field TEM image of np-Ag (87 nm).
Figure S3. Electrochemical capacitance measurements to determine the ECSA of electrodes. (a, c, e) CVs measured at different scan rates and (b, d, f) the measured capacitive currents plotted as a function of scan rate of bare carbon paper, np-Ag (87 nm) and np-Ag (21 nm), respectively.