A Tandem Photoelectrochemical Water Splitting Cell Consisting of CuBi$_2$O$_4$ and BiVO$_4$ Synthesized from a Single Bi$_4$O$_5$I$_2$ Nanosheet Template

Yi-Hsuan Laia, Kai-Che Lin$^{+}$a, and Chen-Yang Yen$^{+}$a, and Bo-Jyun Jiang a

aDepartment of Materials and Optoelectronic Science, National Sun Yat-sen University, Taiwan, 70 Lienhai Rd., Kaohsiung 80424, Taiwan.

* Corresponding author: yhlai@mail.nsysu.edu.tw
$^{+}$These authors contributed equally to this work

Contents

Supporting Figures S1–S9 page S2-S6
Figure S1. The UV-vis transmittance spectrum of Nafion 117TM membrane.

Figure S2. The SEM image (a) and (b) current density (J)–potential (E) curve of nanoBi$_4$O$_3$I$_2$. The J-E curve was recorded in an aqueous 0.1 M B$_i$ buffer solution containing 0.5 M Na$_2$SO$_4$ (pH 9.2) under standardized and chopped solar-light illumination under N$_2$ atmosphere.
Figure S3. The J-E curves of the CuBi$_2$O$_4$ converted from nanoBi$_4$O$_3$I$_2$ with $D = 50 \, \mu$L cm$^{-2}$ and various T, recording in a 0.1 M Bi$_2$ buffer solution containing 0.5 M Na$_2$SO$_4$ (pH 9.2) under chopped solar-light illumination (100 mW cm$^{-2}$, AM 1.5G) under N$_2$ atmosphere.

![Graph showing J-E curves](image1)

Figure S4. GI-XRD patterns of the CuBi$_2$O$_4$ converted from nanoBi$_4$O$_3$I$_2$ with various D at $T = 550^\circ$C. The second phase of Bi$_2$O$_{2.33}$ and CuO exist if D is below and above 40 μL cm$^{-2}$, respectively.

![GI-XRD patterns](image2)
Figure S5. The J-E curve of microCuBi$_2$O$_4$ recorded in an aqueous (i) 0.1 M Bi$_2$ buffer solution containing 0.5 M Na$_2$SO$_4$ (pH 9.2) and (ii) 1 M NaOH under chopped solar-light illumination (100 mW cm$^{-2}$, AM 1.5G) under N$_2$ atmosphere.

Figure S6. The J-E curve of a microCuBi$_2$O$_4$|Co-B$_i$ recorded in an aqueous 0.1 M Bi$_2$ buffer solution containing 0.5 M Na$_2$SO$_4$ (pH 9.2) under N$_2$ atmosphere with standardized solar-light illumination (100 mW cm$^{-2}$, AM 1.5G, red trace) and filtered by a nanoBiVO$_4$|Co-B$_i$ electrode (black trace).
Figure S7. The $J-E$ curve of BiVO$_4$ converted from nanoBi$_4$O$_5$I$_2$ with (i) $D=50$ μL cm$^{-2}$, (ii) $D=67$ μL cm$^{-2}$, (iii) $D=33$ μL cm$^{-2}$, and (iv) $D=83$ μL cm$^{-2}$, recording in an aqueous 0.1 M Bi$_2$ buffer solution containing 0.1 M Na$_2$SO$_3$ (pH 9.2) under chopped solar-light illumination (100 mW cm$^{-2}$, AM 1.5G) under N$_2$ atmosphere.

Figure S8. The UV-vis absorption spectra of nanoBiVO$_4$ and nanoBiVO$_4$|Co-B$_i$.

S5
Figure S9. Overlaid $|J|$-E curves of nanoBiVO$_4$|Co-B$_i$ (black solid) under chopped solar light irradiation (100 mW cm$^{-2}$, AM 1.5G) and microCuBi$_2$O$_4$|Co-B$_i$ placed in the tandem cell position (illumination was filtered by nanoBiVO$_4$|Co-B$_i$, red solid). The measurements were performed in a three-electrode system in an aqueous 0.1 M Bi buffer solution containing 0.5 M Na$_2$SO$_4$ (pH 9.2). An Ag/AgCl/KCl$_{sat}$ electrode was used as the reference electrode, and a platinum foil as the counter electrode. A virtual curve (blue dash dot) shows a 0.2 V cathodic shift of the photocurrent curve of nanoBiVO$_4$|Co-B$_i$, and that an operating photocurrent of approximately 0.25 mA cm$^{-2}$ (red circle) should be obtained if an external bias of 0.2 V is applied to the BiVO$_4$- CuBi$_2$O$_4$ tandem cell. The nanoBiVO$_4$|Co-B$_i$ and the microCuBi$_2$O$_4$|Co-B$_i$ electrodes have a same exposed geometrical surface area of 0.5 cm2.