Supplementary Information

A Microfluidic Photoelectrochemical Cell for Solar-driven CO$_2$ Conversion into Liquid Fuels with CuO-based Photocathodes

Evangelos Kalamaras$^{a*}$, Meltiani Belekoukia, Jeannie Z. Y. Tan$^a$, Jin Xuan$^{b*}$, M. Mercedes Maroto-Valera, John M. Andresena$^{*}$

Research Centre for Carbon Solutions (RCCS), School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
$^*$corresponding authors: ek15@hw.ac.uk (EK), j.xuan@lboro.ac.uk (JX), j.andresen@hw.ac.uk (JMA)
Fig. 1. SEM, EDAX characterization of as-synthesized CuO photoelectrodes a) cross-sectional SEM images and b-g) cross-sectional EDAX element overlay of CuO photoelectrodes.
Fig. 2. SEM, EDAX characterization of as-synthesized α-Fe₂O₃/CuO photoelectrodes: a) cross-sectional SEM images and b-h) cross-sectional EDAX element overlay of CuO photoelectrodes.
Fig. 3. X-ray photoelectron spectroscopy (XPS) characterization of as-synthesized CuO, CuO/Cu$_2$O and α-Fe$_2$O$_3$/CuO photoelectrodes
Fig. 4. Chronoamperometry characterization of $\alpha$-Fe$_2$O$_3$/CuO photoelectrodes at 0.3 V vs RHE.