SUPPLEMENTARY MATERIAL

Dietary compound luteolin inhibits pancreatic cancer growth by targeting BCL-2

Zhimei Li,a Yiyuan Zhang,a Lixia Chenb* & Hua Lia,b*
a. Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
b. Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.

Correspondence and requests for materials should be addressed to H.L (li_hua@hust.edu.cn) or L.X.C (syzyclx@163.com)
List of Supplementary material

Figure S1. The inhibitor binding pocket of BCL-2.
Figure S2. Low-energy binding conformations of compounds 1 and 7 bound to BCL-2 generated by virtual ligand docking.
Figure S1. The inhibitor binding pocket of BCL-2. Low-energy binding conformations of compounds 1 bound to BCL-2 generated by virtual ligand docking. Compound 1 depicted as the ball-and-stick model showing carbon (yellow), hydrogen (grey) and oxygen (red) atoms. Compound 1 was observed to occupy the hydrophobic cleft in BCL-2, which is normally occupied by BAX BH3 binding site in the complex.
Figure S2. Low-energy binding conformations of compounds 1 and 7 bound to BCL-2 generated by virtual ligand docking. Compound 1 depicted as the ball-and-stick model showing carbon (yellow), hydrogen (grey) and oxygen (red) atoms. Compound 7 depicted as the ball-and-stick model with blue color.