Electronic Supplementary Information

Selective production of glycols from xylitol over Ru/CTF-catalysts –
Suppressing decarbonylation reactions

Anna Katharina Beine², Andreas J. D. Krüger², Jens Artz², Claudia Weidenthaler³, Christoph Glotzbach³, Peter J. C. Hausoul² and Regina Palkovits²*

² RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
E-mail: palkovits@itmc.rwth-aachen.de; Fax: +49 241-80-22177; Tel: +49 241 80 26497.
³ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany.
³ thyssenkrupp Industrial Solutions AG, ThyssenKrupp Allee 1, 45143 Essen, Germany.
1 Table of contents

2 Physisorption measurement of CTF-materials ... S2
3 Gas Chromatograms ... S2
4 Homogeneous Catalysis .. S3
5 XPS N 1s spectra for CTF-b and unreduced Ru/CTF-b ... S4
6 Leaching of Ru/CTF-b over 5 recycling runs ... S4
2 *Physisorption measurement of CTF-materials*

![Physisorption isotherms for prepared CTF-materials.](image)

Figure S1: Physisorption isotherms for prepared CTF-materials.

3 *Gas Chromatograms*

![Gas chromatograms of the peracetylated reaction solution of xylitol hydrogenolysis over Ru/C.](image)

Figure S2: Gas chromatograms of the peracetylated reaction solution of xylitol hydrogenolysis over Ru/C.
Figure S3: GC-chromatograms of the peracetylated reaction solution of xylitol hydrogenolysis over Ru/CTF-b.

Ara = Arabitol
Thr = Threitol
Rib = Ribitol
Ery = Erythritol

4 Homogeneous Catalysis

Figure S4: Monitoring conversion and yield over time for Ru(BiPy)_3 (473 K, 8 MPa H_2, 2.0 g xylitol, 20 mL H_2O).
5 XPS N 1s spectra for CTF-b and unreduced Ru/CTF-b

![XPS N 1s spectra for CTF-b and unreduced Ru/CTF-b](image)

Figure S5: XPS N 1s spectra for a) CTF-b and b) unreduced Ru/CTF-b referenced to C 1s at 284.50 eV.

6 Leaching of Ru/CTF-b over 5 recycling runs

Table S1: Catalyst loading of Ru/CTF-b over multiple recycling runs (results obtained from ICP-OES analysis of the reaction mixture after reaction).

<table>
<thead>
<tr>
<th>Run</th>
<th>Ru [ppm]</th>
<th>Ru loss [%]</th>
<th>Calc. Ru loading [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.996</td>
</tr>
<tr>
<td>1</td>
<td>0.537</td>
<td>0.107</td>
<td>4.991</td>
</tr>
<tr>
<td>2</td>
<td>0.165</td>
<td>0.033</td>
<td>4.989</td>
</tr>
<tr>
<td>3</td>
<td>< 0.12</td>
<td>< 0.024</td>
<td>≈ 4.989</td>
</tr>
<tr>
<td>4</td>
<td>< 0.12</td>
<td>< 0.024</td>
<td>≈ 4.989</td>
</tr>
<tr>
<td>5</td>
<td>< 0.12</td>
<td>< 0.024</td>
<td>≈ 4.989</td>
</tr>
</tbody>
</table>