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Synthesis of lignin model compounds

o
K2003 o
Acetone
1

2-phenoxyacetophenone 1 was prepared by the literature procedures.! A 500 mL
bottle was charged with phenol (6.9 g, 73 mmol) and K>COz (10.4 g, 75 mmol) in
acetone (150 mL) and stirred at RT for 30 min. To this solution,
2-bromoacetophenone (14.0 g, 70 mmol) was added, the resulting suspension was
stirred at RT for 24 h, after which the suspension was filtered and concentrated in
cacuo. The solid was dissolved in ethyl acetate and washed with NaOH aqueous (5%,
30 ml) and water (30 ml). The organic phase was dried over anhydrous Na>SOs. The
crude product was recrystallized from ethanol to give 2-phenoxyacetophenone as a
white solid. Spectral data were in accordance with those previously reported. For the
other methoxy substituted 2-phenoxyacetophenone, the preparation procedure was the
same as described above except using different starting materials.

o]
HCHO O
K2003 EtOH/Acetone
OH

According to the I|terature. A solution of 2-phenoxyacetophenone 1 (848.0 mg, 4.00
mmol) and HCHO (aqueous solution, 36 wt%, 0.6 mL, 7.3 mmol) in EtOH/acetone
(1:1, 20 mL) was treated with K2COs (0.6 g, 4.3 mmol) and the reaction mixture was
stirred at room temperature for 4 h. The solvent was then evaporated and the residue
was diluted with ethyl acetate and washed with water and brine. The organic phase
was concentrated and the resulting crude materials were purified by column
chromatography with hexanes/EtOAc (15:1 to 1:1) to give the product.

Procedure for the synthesis of the deuterated compounds

o [o}
0. O.
K,CO3
E———
D,0 D D

According to the literature.! 2-phenoxyacetophenone (0.50 g 2.36 mmol) was added
to a vial with anhydrous K>COz (0.126 g, 0.92 mmol) and 5 mL of D2O. The vial was
caped. The reaction ran at 100 <C for 24 h. The D,O was decanted and replaced by
fresh one. The reaction was maintained for additional 24 h at 100 <C. Then the solid
was washed to remove the K>CO3 residues. Finally, the solid was dried under vacuum
to give deuterated compounds as a light yellow solid.



Synthesis of ethylbenzene hydroperoxide

Ethylbenzene hydroperoxide was synthesized by thermal oxidation method. Typically,
30 mL ethylbenzene was added into a 100 mL Teflon insert reactor. Then the reactor
was charged with 0.8 MPa of O, and heated to 130 °C kept for 3 h under magnetic
stirring. When the reaction was complete, the reaction mixture first reacted with
NaOH in water, leading to an aqueous solution of the peroxide sodium salt, which
was neutralized by NaHCO3 followed by extraction with n-hexane and acetonitrile.

Extraction of Lignin®

To birch sawdust (20 g) was added 1,4-dioxane (144 mL) followed by 2N HCI (16mL)
and the mixture was heated to a gentle reflux under a N2 atmosphere for 1 h. The
mixture was then allowed to cool and the lignin containing liquor was collected by
filtration. The collected liquor was partially concentrated in vacuo to give a gummy
residue which was taken up in acetone/water (V:V=9:1, 250 mL) and precipitated by
addition to rapidly stirring water (250 mL). The crude lignin was collect by filtration
and dried under vacuum. The dried crude lignin was taken up in acetone/methanol
(V:V=9:1) and precipitated by dropwise addition to rapidly stirring Et2O (200 mL).
The precipitated lignin was collected by filtration and dried under vacuum to give a
purified birch lignin. This lignin was used in subsequent experiments without further
processing.

Lignin Oxidations®

To a solution of lignin (0.5 g) in 2-methoxyethanol (2.8 mL) and 1,2-dimethoxyethane
(4.2 mL) solution was added 50 mg of DDQ followed by 22 mg of tBuONO. The
reaction mixture was placed under an Oz atmosphere (balloon) and stirred at 80 <C for
14 h. The oxidized lignin was isolated by precipitation in EtO (70 mL) and filtering,
dried under vacuum to give an oxidized birch lignin.

Catalytically oxidative cleavage of oxidized lignin

0.1g of oxidized lignin with 10 mL of methanol and 40 mg of CTF-pDCB-1 catalyst
were added into a 60 mL Teflon insert reactor. Then the reactor was charged with 0.5
MPa of Oz and heated to 180 °C kept for 8 h under magnetic stirring. After the
reaction was complete, the reaction mixture was centrifuged, solid catalyst was
washed several times with methanol and the liquid was all collected and evaporated.
DMSO-d6 and internal sample pyrazine was added to determine the 2D HSQC NMR
spectrum.

1. M. Wang, L. H. Li, J. M. Lu, H. J. Li, X. C. Zhang, H. F. Liu, N. C. Luo and F.
Wang, Green Chem., 2017, 19, 702-706.

2. J. Zhang, Y. Liu, S. Chiba and T. P. Loh, Chem. Commun., 2013, 49,
11439-11441.

3. C.S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood, Angew. Chem., Int. Ed.,
2015, 54, 258-262.
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Fig. S1 FT-IR spectra of the monomers and the corresponding CTFs.



Fig. S2 TEM of (a) CTF-pDCB-1, (b) CTF-mDCB-1, (c) CTF-pDCB-10, (d)
CTF-mDCB-10 and (¢) CTF-DCBP-10.
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Fig. S3 C 1s peak of (a) CTF-pDCB-1, (b) CTF-mDCB-1, (c¢) CTF-pDCB-10, (d)

CTF-mDCB-10 and (e) CTF-DCBP-10 at high resolution.
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Fig. S4 N 1s peak of (a) CTF-pDCB-1, (b) CTF-mDCB-1, (c) CTF-pDCB-10, (d)

CTF-mDCB-10 and (e) CTF-DCBP-10 at high resolution.



Table S1 The content of different types of C 2

Entry Sample C-C (%) C-N (%) C-0 (%)
1 CTF-pDCB-1 60.5 24.8 14.7
2 CTF-mDCB-1 60.4 24.9 14.7
3 CTF-pDCB-10 52.0 20.7 27.3
4 CTF-mDCB-10 55.6 234 21.0
5 CTF-DCBP-10 68.2 144 174

& Determined by XPS.

(a) (b)

Intensity / a.u
Intensity / a.u.
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Fig. S5 (a) C 1s peak and (b) N 1s peak of CTF-pDCB-1 after reaction at high

resolution.
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Fig. S6 The N sorption isotherms and the pore size distributions of CTFs.
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Fig. S7 The products of catalytically oxidative cleavage of lignin model compound 1.
A had the same retention time with phenyl formate and B had the same retention time
with phenylglyoxal.
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Fig. S8 The linear fit of In(C/Co) against the reaction time of (a)

2-phenoxyacetophenone, (b) Deuterium-labeling 2-phenoxyacetophenone, Ci/Co was
defined as the ratio of the concentration at t and initial of the substrate. Reaction
conditions: 0.4 mmol of substrate, 40 mg of CTF-pDCB-1, 5 mL of methanol, 140 °C,
0.5 MPa of O, internal standard: 20.3 mg of p-dichlorobenzene.



Table S2 ZnCl; as catalyst for the oxidative cleavage of lignin model compound 1 2

Product distribution (%) Sfeltlactivity

Entry  Catalyst C(gnv. of cleavage
(%)
1 ZnCl» 246 447 3.1 381 0 13.3 0.8 859

& Reaction conditions: 0.4 mmol of substrate, 4.4 mg of ZnCl», 5 mL of methanol, 140
°C, 2 h, 0.5 MPa of Oa. Selectivity of cleavage products was presented as the amount
of (2 + 3 + 4 + 5) in product distribution. Others include some unidentified and
undetected compounds that were regarded as uncleavage products.

Table S3 Different reaction atmosphere for the catalytic cleavage of lignin model
compound 12

Product distribution (%) Sfekl?c'[iVity
Entry Atmosphere anV- of cleavage
% 2 3 4 5 6 othes Products
(%)
1 N2 251 30.7 3.8 0 0 495 16.0 34.5
2 NJO, 713 468 143 229 54 32 74 89.4

& Reaction conditions: 0.4 mmol of substrate, 40 mg of CTF-pDCB-1, 5 mL of
methanol, 140 °C, 2 h. Selectivity of cleavage products was presented as the amount
of (2 + 3 + 4 + 5) in product distribution. Others include some unidentified and
undetected compounds that were regarded as uncleavage products.



Table S4 The catalytic conversion of lignin model compound 1 over the catalysts 2

o o o o o/ o—
o ) o
OH o OH , ~,
+ +
> 0
1 2 3 4 5 6

Conv. Product yield (%) Selectivity (%)

Entr Catalyst
Y Y (%) 2 3 4 5 6 2 3+4+5

1 Blank 16.9 11.0 0.1 8.5 0 30 651 50.9
2 CTF-pDCB-1 66.8 54.4 13.6 34.2 4.8 30 814 78.7
3 CTF-mDCB-1 51.5 32.2 8.3 18.1 24 110 625 55.9
4 CTF-pDCB-10 745 63.7 12.9 359 9.5 36 855 78.3
5 CTF-mDCB-10  89.0 65.0 17.2 290 113 28 730 64.6
6 CTF-DCBP-10  55.6 36.4 6.6 23.8 2.4 83 655 59.0
7 Pyridine 52.2 39.7 1.8 36.8 3.0 13 761 79.7
8 Pyrimidine 27.8 17.2 0.2 15.2 0 1.8 619 55.4
9o 1,3,5-Triazine 745 64.2 3.9 242 1.4 0 86.2 39.6
10¢ CTF-pDCB-1 >99 83.7 27.7 446 148 0 83.7 87.1

& Reaction conditions: 0.4 mmol of substrate, 40 mg of catalyst, 5 mL of methanol,
140 °C, 2 h, 0.5 MPa of O2. ® 18 mg of catalyst, ¢ 60 mg of catalyst, 160 °C, 6 h.



Fig. S9 The color change of the reaction solution (left) after adding the KI aqueous
(middle) and titration by Na>S,O3 (right). The color of the solution changed from
canary yellow to brown with I” oxidizing to I, indicating the presence of the substrate
peroxide.
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Fig. S10 (a) GC-MS spectrum of the reaction solution with triphenylphosphine added
and (b) MS spectrum of triphenylphosphine oxide. Triphenylphosphine oxide was
detected, indicating the peroxide was present.
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Fig. S11 The verification of the proposed intermediates phenyl formate and
phenylglyoxal by HRMS/MS (ESI, M+H). For the reaction sample, reaction
conditions: 0.4 mmol of substrate, 40 mg of CTF-pDCB-1, 5 mL of methanol, 0.5
MPa of Oz, 140 °C, 2 h.
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Fig. S12 GC-MS spectra of the oxidation of lignin model compound 1 (a) in methanol
and (a’) MS spectrum of HCOOMe, (b) in n-butanol and (b’) MS spectrum of
HCOOBLu.

Fig. S13 Limewater images before (left) and after (right) introduction of the reaction
gas phase. The limewater was cloudy, indicating the generation of CO2 during the

reaction.



Table S5 The content of the structural units 2

Lignin Oxidized Lignin
Weight (mg) 40.0 40.0
S26(2H) (peak area ratio to 0.43 0.11
internal)
S’26(2H) '(peak area ratio to 0.02
internal) 0.14
S’’26 (2H) (peak area ratio to '
. 0.01
internal)
Scondensed (1H) (peak area
o 0.07 -
ratio to internal)
G2 (1H) (peak area ratio to 0.13 0.03
internal)
G’2(1H) (peak area ratio to ] 0.04
internal)
Total Cg units 0.43 0.195
B-O-4 o (IH) (peak area 0.20 0.02
ratio to internal)
-O-4 linkages per Co unit 46.5% 10.3%
A’(1H) (]:oeak area ratio to 0 0.04
internal)
A’’(1H) (_peak area ratio to 0 0.06
internal)
A’ linkages per Cg unit 0 20.5%
A’ linkages per Co unit 0 30.8%
210.0 mg of internal (peak area=1.00),
Total Co units =(S26+ S’26+ S’’26) / 2 + Scondensed + G2+ G’2
B-O-4 linkages per Cg unit=-O-4 o / Total Co units
A’ linkages per Co unit=A’ / Total Cg units
A’ linkages per Co unit=A"’ / Total Cg units
Table S6 The conversion of the 3-O-4 ketone bonds ?
Standard oxidized | Oxidized lignin | Conversion of -O-4

lignin

for reaction

Weight (mg) 40.0 100.0

A (pefak area ratio to 0.04 0.01
internal)

A (pe_ak area ratio to 0.06 0.04
internal)

& Internal: 10.0 mg of pyrazine (peak area=1.00)
After reaction: the conversion of 3-O-4 ketone bonds was calculated referred to
internal [(0.06 + 0.04)*(100 / 40) - (0.04 + 0.01)] / (0.06 + 0.04) / (100 / 40) = 80.0%

ketone bonds (%)
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Fig. S14 2D HSQC NMR spectra (in DMSO-d6) of (A) birch lignin (B) oxidized
birch lignin and (C) after the catalytic cleavage reaction. Equivalent internal of
pyrazine was added to the solution, the conversion was calculated according to the

relative cross peaks areas of A’ and A” to the internal.



NMR spectra of the compounds.
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