Supporting Information

Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents: an innovative evaluationcriterion to filtrate extractants using compatibility index

Zhiheng Li ^a, Dong Liu ^a, *, Zhuowu Men ^b, Linhua Song ^c, Yijun Lv ^b, PingPing Wu ^a, Bin Lou ^a, Yadong Zhang ^a, Nan Shi ^a and Qingtai Chen ^a

^a College of Chemical Engineering, China University of Petroleum, Qingdao 266580, PR China ^b National Institute of Clean-and-Low-Carbon Energy, Beijing 102209, PR China

^c College of Science, China University of Petroleum, Qingdao 266580, PR China

Author information

Corresponding Author

*Dong Liu, Telephone/Fax: +86-0532-86984629, E-mail: <u>ldongupc@vip.sina.com</u>

1. Calculation details

(1) Oxidation of DBT

Standby oil with only DBT (6000 μ g/g) was used as the model oil. Equal mass of DESs and model oil were mixed in a round-bottom flask, followed by addition of H₂O₂ with the mass ratio of m(H₂O₂): m(DBT)= 10: 1. The mixture was agitated vigorously at 50 °C for 60min in water bath, and then settled for another 60min at the same temperature. The DESs with sulfides (bottom phase) was taken out and diluted with equal mass of deionized water. The solution was filtered by using ultrafiltration membrane (Φ = 0.45 µm) to obtain the oxidative product of DBT. After drying in a vacuum oven at 60 °C for 24h, the oxidative product was collected in a sample bottle.

(2) Calculation of electronic static potential (ESP) difference

Gaussian 09 revision D.01 was applied to optimize the molecular geometries of HBDs and heterocycles with DFT-D3 method at M062X/6-311+G** level, and then followed by investigation of ESP mapped on an isosurface of electronic density of 0.001 a.u. as shown in Fig. S4. Considering the acidity or alkalinity, the electronic static potential difference of HBDs and heterocycles was calculated by:

$$\left|\Delta E_{i}\right| = \left|E_{i}^{H} - E_{\infty}\right| \tag{S1}$$

$$\left|\Delta E_{j}\right| = \left|E_{j}^{HA} - E_{\infty}\right| \tag{S2}$$

where E_i^H donates the ESP upon hydroxyl hydrogen atom in HBDs, $E_i^{S/N}$ is the ESP of heteroatom (sulfur or nitrogen) in heterocycles, and E_{∞} represents the ESP at infinity. Theoretically, the value of E_{∞} should be zero.

For heterocycles without acidity or alkalinity, the electronic static potential difference of HBDs and heterocycles was obtained by:

$$\left|\Delta E_{i}\right|' = \left|E_{i}^{A} - E_{i}^{B}\right| \tag{S3}$$

$$\left|\Delta E_{j}\right|' = \left|E_{j}^{A} - E_{j}^{B}\right| \tag{S4}$$

where E_i^A (or E_j^A) and E_i^B (or E_j^B) are the ESP of A and B atoms upon HBDs (or heterocycles), respectively.

(3) Calculation of intermolecular interaction energy

The di-molecular structures of HBDs and heterocycles were optimized with DFT-D3 method at M062X/6-311+G** level to obtain the total energy. By the way, the individual energy of optimized HBDs and heterocycles was also calculated by Gaussian. The interaction energy between HBDs and heterocycles was therefore determined from:

Interaction energy =
$$E(Hh) - E(H) - E(h)$$
 (S5)

where E(Hh) means the total energy of the di-molecules, E(H) and E(h) represent the individual energy of HBDs and heterocycles, respectively.

(4) Calculation of proton dissociation enthalpy (ΔH)

The geometries of the HBDs molecules and their anions were optimized at first, and then followed by vibrational frequency calculation with DFT-D3 method at B3LYP/6-31+G (d, p) level. The \triangle H values of HBDs could be obtained from:

$$\Delta H = E(M^{-}) - E(M) + E(H^{+})$$
(S6)

where $E(M^-)$ was the enthalpy of the anion, E(M) represented the enthalpy of the molecule, and $E(H^+)$ was the enthalpy of H^+ (6.19 kJ/mol)^[1].

(5) Regeneration of DESs

The recycled DESs was diluted with qual mass of deionized water, followed by a filtration for the solution using ultrafiltration membrane (Φ = 0.45 µm). The rotary evaporation would be conducted to eliminate most of water in the solution. Finally, the sticky liquid was throughly dried in a vacuum oven at 60 °C for 24h to obtain regenerated DESs.

2. Tables

Classification	Components	$\left \Delta E_{i}\right $ (kJ·mol ⁻¹)	$\left \Delta E_{j}\right $ (kJ·mol ⁻¹)	
	p-Methylphenylacetic acid	197.9		
	Mandelic acid	201.9		
	p-Toluenesulfonic acid	232.2		
HBDs	1, 3-Propylene glycol	179.4		
	Malonic acid	217.8		
	Urea	150.5		
	L-(+)-Tartaric acid	237.8		
	Quinoline		147.7	
Heterocycles	Carbazole		33.73	
	DBT		54.25	
	DBTO ₂		148.8	

Table S1 Calculation results of $|\Delta E_i|$ and $|\Delta E_j|$ for various HBDs and heterocycles

Classification	Components	$\left \Delta E_{i}\right '$ (kJ·mol ⁻¹)	$\left \Delta E_{j}\right ' (\text{kJ}\cdot\text{mol}^{-1})$
	p-Methylphenylacetic acid	15.37	
	Mandelic acid	18.96	
	p-Toluenesulfonic acid	25.1	
HBDs	1, 3-Propylene glycol	58.76	
	Malonic acid	79.84	
	Urea	83.28	
	L-(+)-Tartaric acid	104.9	
	Carbazole		19.82
Heterocycles	DBT		3.544
	DBTO ₂		24.78

Table S2 Calculation results of $|\Delta E_i|'$ and $|\Delta E_j|'$ for various HBDs and heterocycles

Extractant	Oxidant	Classes (µg/g) with removal efficiencies (wt.%)				Total (ug/g)
		Thiophenes ^a	Thiols	Thioethers	Others	Total (µg/g)
None	None	2367.3 (-)	160.3 (-)	358.7 (-)	764.3 (-)	3650 (-)
D2	None	2206.4 (6.8)	97.32 (39.3)	336.4 (6.2)	627.2 (17.9)	3267 (10.5)
D3	None	2127.9 (10.1)	95.20 (40.6)	333.8 (6.9)	611.5 (20.0)	3168 (13.2)
D2	H_2O_2	933.8 (60.6)	84.29 (47.1)	120.1 (66.5)	198.4 (74.0)	1337 (63.4)
D3	H_2O_2	799.6 (62.2)	73.66 (54.0)	124.8 (65.2)	181.0 (76.3)	1179 (67.7)

Table S3 Desulfurization efficiency of real diesel with D2 and D3

^a contains thiophenes, benzothiophene, dibenzothiophene and their derivates.

Table S4 Denitrificat	tion efficiency	of real diese	l with D2 and D3

Extractant	Oxidant	Classes (μ g/g) with removal efficiencies (wt.%)				Total (us/a)
		Amines ^a	Pyrroles ^b	Pyridines ^c	Others	– Total (μg/g)
None	None	77.27 (-)	115.88 (-)	58.33 (-)	174.8 (-)	426.3 (-)
D2	None	30.60 (60.4)	47.60 (58.9)	16.04 (72.5)	96.30 (44.9)	190.5 (55.3)
D3	None	28.55 (63.1)	47.79 (58.7)	14.98 (74.3)	91.13 (47.9)	182.4 (57.2)
D2	H_2O_2	24.67 (68.1)	32.17 (72.2)	14.97 (74.3)	87.18 (50 .1)	159.0 (62.7)
D3	H_2O_2	26.81 (65.3)	28.13 (75.7)	13.53 (76.8)	86.17 (50.7)	154.6 (63.7)

^a contains amine, amide and their derivates; ^b contains pyrrole, indole, carbazole and their derivates; and ^c contains pyridine, quinoline and their derivates.

3. Figures

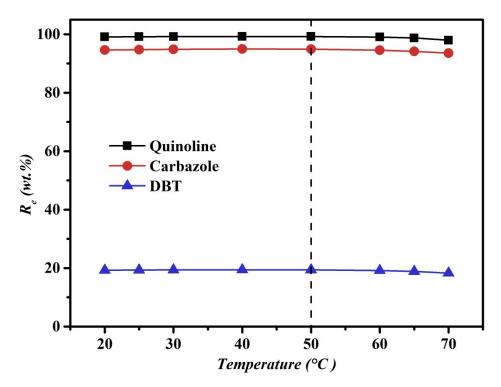


Fig. S1 Effect of extaction temperature on the removal efficiency (extraction time of 60min, m(DESs):m(model oil) ratio of 1:1)

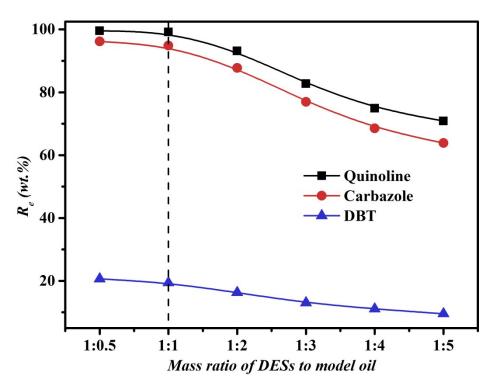


Fig. S2 Effect of DESs/model oil mass ratio on the removal efficiency (extraction temperature of 50 °C, extaction time of 60min)

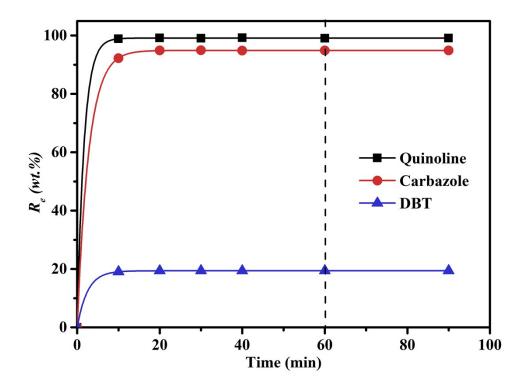


Fig. S3 Effect of extraction time on the removal efficiency (extraction temperature of 50 °C, m(DESs):m(model oil) ratio of 1:1)

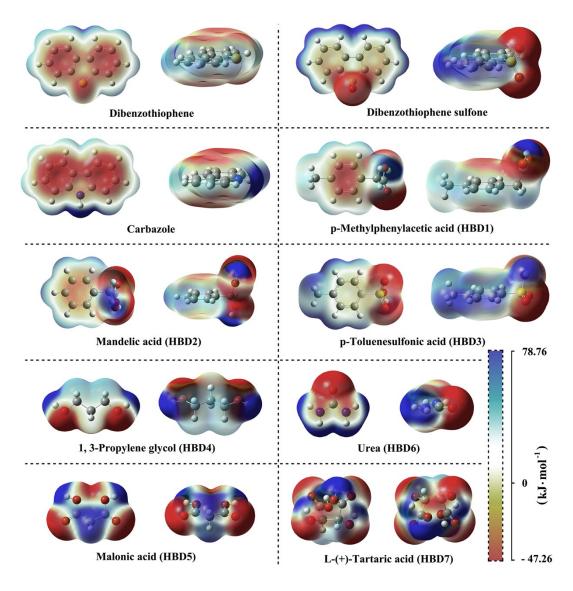


Fig. S4 Electronic static potential (ESP) of various HBDs and targeted heterocycles molecules

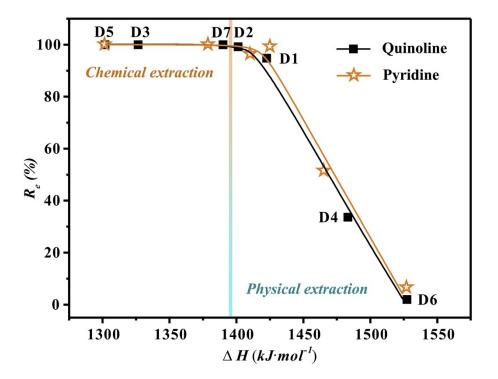


Fig. S5 Plots of R_e values for quinoline and pyridine as a function of proton dissociation enthalpy (\triangle H) for HBDs. The calculation was conducted at B3LYP/6-31+G** level with DFT-D3 empirical dispersion corrections using Gaussian 09 D.01 software. (Quinoline: this work, pyridine: from Ali et al. ^[2])

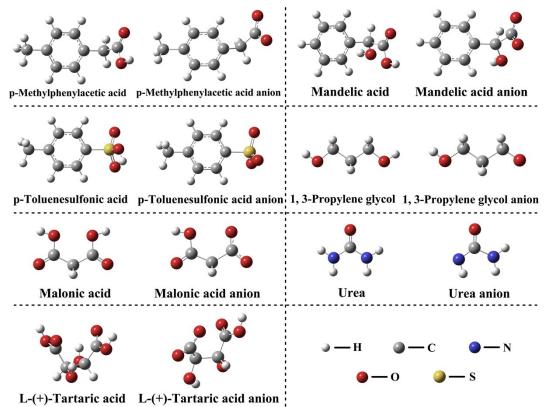


Fig. S6 Optimized geometries of various HBDs molecules and anions using Gaussian 09 software

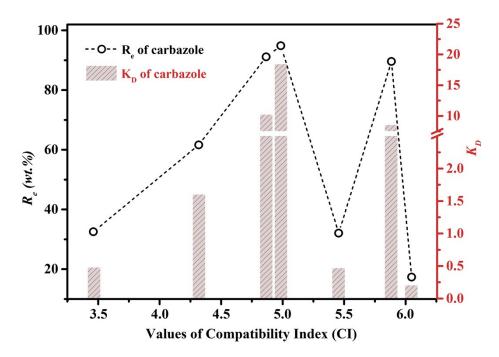


Fig. S7 Influence of parameter CI on the R_{e} and K_{D} values for removing carbazole

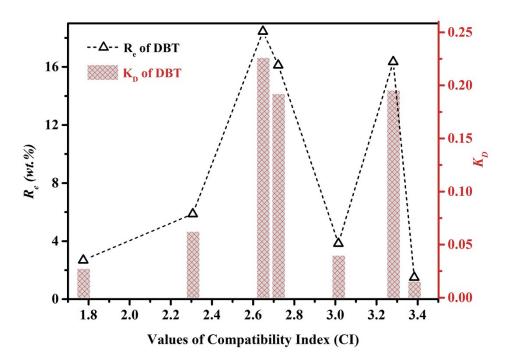


Fig. S8 Influence of parameter CI on the R_{e} and K_{D} values for removing DBT

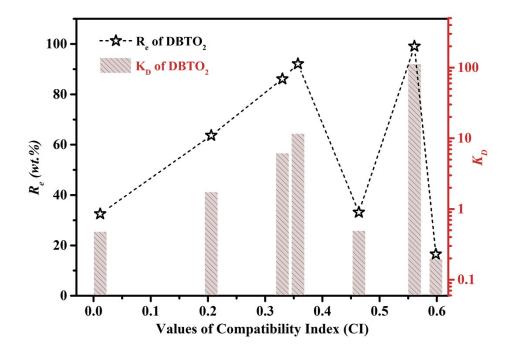


Fig. S9 Influence of parameter CI on the R_e and K_D values for removing \mbox{DBTO}_2

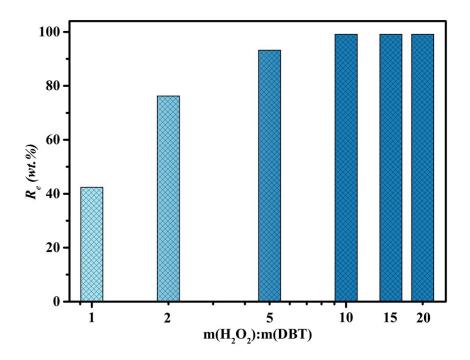


Fig. S10 Influence of m(H₂O₂):m(DBT) ratio on the removal efficiency of sulfides (extraction temperature of 50 °C, extraction time of 60 min)

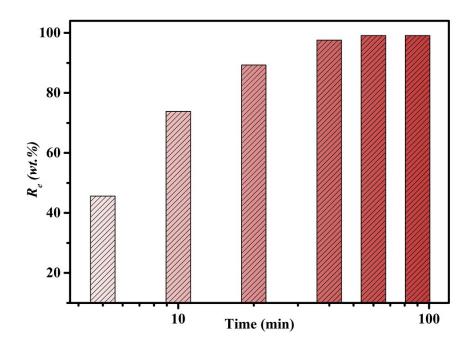


Fig. S11 Influence of reaction time on the removal efficiency of sulfides (extraction temperature of 50 °C, m(H₂O₂):m(DBT) ratio of 10:1)

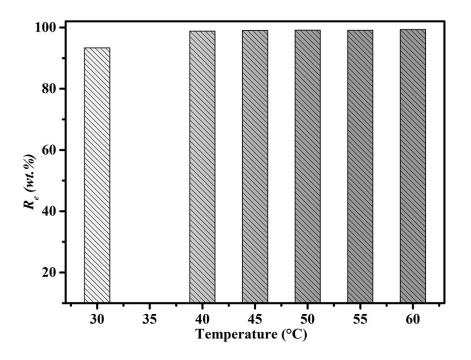


Fig. S12 Influence of reaction temperature on the removal efficiency of sulfides (extraction time of 60 min, $m(H_2O_2)$:m(DBT) ratio of 10:1)

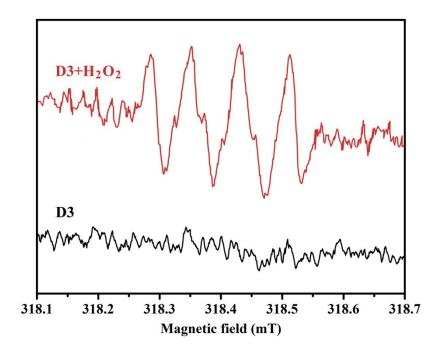


Fig. S13 Electron spin resonance (ESR) spectra of $_{DMPO-O_2^{\bullet-}}$ in D3 systems with or without H_2O_2 . The characteristic peaks suggest the generation of $O_2^{\bullet-}$ radical in D3 extraction system, which is responsible for the oxidation of DBT into DBTO₂.

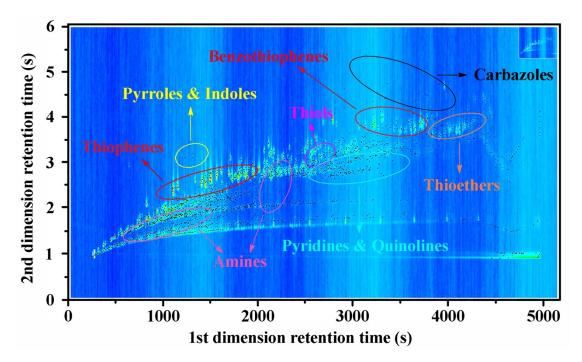


Fig. S13 Two-dimensional contour plot of raw catalytic cracking diesel

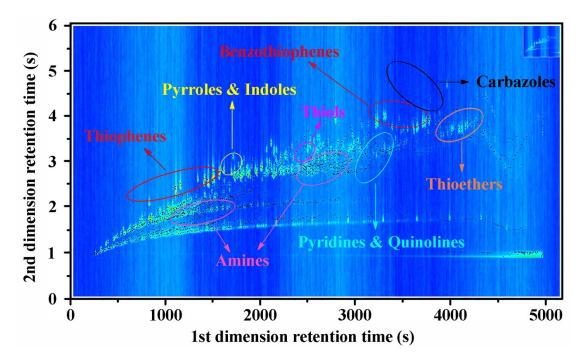


Fig. S14 Two-dimensional contour plot of catalytic cracking diesel after oxide-assisted extraction

in D3

Reference:

- [1] R. Vessecchi and S. E. Galembeck, J. Phys. Chem. A, 2008, 112, 4060.
- [2] M. C. Ali, Q. Yang, A. A. Fine, W. Jin, Z. Zhang, H. Xing and Q. Ren, Green

Chem., 2016, 18, 157